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ABSTRACT 

 
Natural events can be the indirect cause of technological accidents with severe 

consequences for human beings and the environment. In the literature, these events are 

also known as Na-Techs (i.e. technological events triggered by natural causes). Na-Techs 

may damage structures, infrastructures, chemical industries, utility distribution networks 

(lifelines), etc. The overall magnitude could be much greater than that of the natural event. 

A great concern is also related to other aspects, such as the potential overloading of the 

emergency response and/or the unavailability of essential utilities (water, electricity, etc.).  

This thesis aimed at the investigation of volcanic Na-Tech scenario and the definition of 

vulnerability models, which allow implementing the Quantitative Risk Assessment procedure 

to include volcanic Na-Tech and identifying malfunctions in wastewater treatment. The main 

focus was on a particular volcanic hazard, i.e. volcanic ash fallout, whose impact covers 

large areas, in same case a continental dimension. 

The results of this study permitted also the definition of semi-automatic procedures for the 

production of the vulnerability maps by using a GIS (Geographical Information System) 

software. 

After the development of vulnerability models of some industrial equipment, it was possible 

to investigate a case-study, which was the surrounding of Mt. Etna (Italy). 
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Introduction 
 

 

 

1.1 Natural Technological accidents 

Natural events can be the indirect cause of technological accidents with severe 

consequences for human beings and the environment, particularly in areas that are not 

prepared to cope with this type of emergency. In the literature, these events are also known 

as Na-Tech accidents or simply Na-Techs (i.e. technological events triggered by natural 

causes). Na-Techs may damage structures, infrastructures, industries, utility distribution 

networks (lifelines), etc. The overall magnitude could be much greater than that of the 

natural event. A great concern is also related to other aspects, such as the potential 

overloading of the emergency response and/or the unavailability of many essential utilities 

(water, electricity, etc.). Past catastrophic events highlighted the high destructive potential of 

a Na-Tech, some of them are mentioned below. 

The accident at the Fukushima nuclear power stations in Japan was caused by an 

earthquake/tsunami in 2011 and caught the worldwide attention. The main failure was due 

to the malfunction of the pumping system of the cooling water to the reactors [1]. The 

earthquake also caused a fire in the Chiba oil refinery. Another significant event occurred 

during the Kocaeli earthquake in 1999; according to Girgin [2], the disaster hit one of the 

most industrialized regions of Turkey and, amongst the numerous Na-Techs, the author 

reported about the massive fire at the TÜPRAŞ refinery and the acrylonitrile spill at the 

AKSA acrylic fibre production plant. In 2005, following to the hurricane Katrina, a huge 

number of releases of hazardous materials occurred from over 300 chemical facilities, 

moreover hundreds of miles of oil and gas pipelines were displaced or broken (inland and 

offshore). In the Czech Republic in 2002, a flood originated a chlorine release; during the 
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same year, in the Southern France another flood damaged some industrial facilities with 

several releases of hazardous materials [3]. 

In some cases, even modest natural events also caused Na-Techs: as reported by many 

local newspapers, during some floods, occurred in autumn and winter in 2008-2012 in Sicily 

(Italy), several refinery shutdowns were necessary to prevent and mitigate the damage due 

to the overloading of the water treatment lines, which in some cases resulted in soil and 

groundwater contamination.  

1.2 Factors affecting dynamics of Na-Techs 

There is currently a little knowledge about dynamics of Na-Techs; nevertheless the potential 

of damage is aggravated, in some cases, by climate changes and the increasing society’s 

vulnerability [4]. 

According to EPA [5] and the American Academies [6], climate changes prior to the 

Industrial Revolution in the 1700s can be explained by natural causes, such as changes in 

solar energy, volcanic eruptions and natural changes in greenhouse gas (GHG) 

concentrations, whereas recent climate changes (especially the global warming) cannot be 

explained by natural causes alone. 

The vulnerability of civil societies refers to the inability of people, organizations and 

societies to withstand adverse impacts from multiple stressors to which they are exposed 

(i.e. natural hazards and anthropogenic activities). As shown in the literature, the 

conceptualisation and the measurement of the vulnerability are object of intense debate. 

Some definitions are reported below [7]: 

 Vulnerability is the threat to which people are exposed (including chemical agents and 

the ecological situation of the communities and their level of emergency preparedness) 

(Gabor and Griffith, 1980); 

 Vulnerability is the degree to which a system acts adversely to the occurrence of a 

hazardous event. The degree and quality of the adverse reaction are conditioned by a 

system's resilience (a measure of the system's capacity to absorb and recover from the 

event) (Timmerman, 1981); 

 Vulnerability is the degree of loss to a given element or set of elements at risk 

(UNDRO, 1982; Mitchell, 1989); 

 Vulnerability is the capacity to suffer harm and react adversely (Kates, 1985); 

 Vulnerability is the threat or interaction between risk and preparedness (Pijawka and 

Radian, 1985); 
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 Vulnerability is operationally defined as the inability to take effective measures to insure 

against losses. When applied to individuals vulnerability is a consequence of the 

impossibility or improbability of effective mitigation and is a function of ability to detect 

the hazards (Bogard, 1989); 

 Vulnerability refers to exposure to contingencies and stress and difficulty in coping with 

them (Chambers, 1989); 

 Vulnerability is defined in terms of exposure, capacity and potentiality. Accordingly, the 

prescriptive and normative response to vulnerability is to reduce exposure, enhance 

coping capacity, strengthen recovery potential and bolster damage control (Watts and 

Bohle, 1993); 

 Vulnerability is the differential capacity of groups and individuals to deal with hazards 

based on their positions within physical and social worlds (Dow, 1992); 

 Vulnerability is the differential susceptibility to damage due to different contributing 

circumstances (biophysical, demographic, economic, social and technological factors) 

(Dow and Downing, 1995); 

 Vulnerability is conceived as both a biophysical risk as well as a social response, but 

within a specific geographic domain. This can be geographic space (where vulnerable 

people and places are located) or social space (who in those places is most vulnerable) 

(Cutter, 1996). 

At a glance, the vulnerability of a system is usually described by combining the susceptibility 

(inherent propensity to damage) and the resilience (propensity to deal with the emergency 

and the recovery of normal activity) of the territory [8]. 

1.3 European and global framework in Na-Tech risk 

In the European framework there is not specific legislation or any type of guideline 

regarding risk assessment and management of Na-Techs. Nevertheless there are several 

laws indirectly mentioning such aspects, through the rules governing industrial 

establishments handling hazardous materials, landfill sites and waste treatment plants [9]. 

Regulations for managing operations in lifeline systems (such as electrical power plants, 

gas and oil pipelines, etc.) also indirectly concern to the Na-Tech risk reduction. For 

instance, the Seveso Directives specifically refer to the prevention of major accidents in the 

chemical plant [10-13] and even if these laws do not include specific requirements for Na-

Tech management, they indirectly address them. Indeed, the legislation calls for the 

analysis of “external events” which may lead to chemical releases, this obviously implies 

also the consideration of the potential threat due to natural hazards. However, these 
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Directives do not specify the methodologies or the actions to be taken, as a consequence 

the levels of response preparedness vary among European countries. A summary of how 

various EU countries are currently facing to Na-Tech events is given in [9].  

1.4 State of the art of Na-Techs 

There are few studies in the literature analysing Na-Tech events, whereas several works 

report about natural and technological accidents as separate events. Showalter and Myers 

in 1994 [14] gave the first investigation of Na-Tech events; they carried out a survey to 

determine the number of technological scenarios triggered by natural catastrophic events 

during the period 1980-1989 in the United States and found that the majority of Na-Techs 

were triggered by earthquakes, followed by hurricanes, floods, lightning, winds and storms. 

Authors also observed an increasing trend of Na-Techs during the analysed period due to 

different causes: (1) the increasing industrialization and urbanization of the territory, (2) 

climate changes, etc. Such elements also increased the awareness about these events and 

concurred to consider these scenarios as emerging risks. The identification of the areas that 

are susceptible to Na-Techs, the development of specific mitigation and emergency 

response plans and the implementation of existing ones were recommended. 

Following the Northridge earthquake in California in 1994, Lindell and Perry [15] found that 

the 19% of Na-Techs gave a release of dangerous substances. Cruz et al. in 2001 [16] 

identified potential Na-Tech scenarios from petroleum refineries under the impact of 

hurricanes, flooding and lightning; they found that these phenomena could trigger multiple 

and simultaneous hazardous releases. Steinberg and Cruz in 2004 [17] studied Na-Techs 

that occurred during the 1999 Turkey earthquake; they identified more than 21 releases of 

hazardous materials triggered by the natural phenomenon, 8 of these resulted in major 

consequences and impacted outside the confines of the establishments. These required the 

evacuation of thousands of residents and resulted in the abandonment of search and 

rescue operations for earthquake victims. The authors concluded that risk management and 

emergency response planning is a complex issue since it is necessary to take into account 

that the natural phenomenon may cause the simultaneous loss of electrical power and 

water, the failures of mitigation systems, the impediment of emergency responses, the 

potential simultaneous occurrence of numerous releases of hazardous substances, etc. 

Lindell and Perry [18] stated that the level of disaster preparedness is correlated with the 

level and completeness of vulnerability assessments. In spite of this Cruz et al. [9] reported 

that, many countries have natural hazards but none appear to have Na-Tech vulnerability 
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maps. These statements suggest improving the knowledge about the vulnerability of 

industrial facilities and developing vulnerability maps as a tool for decision making. 

1.4.1 Volcanic Na-Techs 

Amongst natural events, which trigger technological disasters, volcanic eruptions should 

also be mentioned, even if before the recent volcanic eruption of the Mt. Eyjafjallajökull 

(Iceland) in 2010, only few studies focused on the impact of such destructive phenomena. 

This Section provides a brief review. 

Blong [19] in 1984 gave a list of volcanic hazards and related effects on human health, 

buildings, agriculture, anthropogenic activity, etc, whereas Spence et al. [20] assessed the 

vulnerability of buildings under the impact of ash fallout. Self [21] listed the following 

potential consequences of eruptions [22]:  

 roof collapses – the effect extends also to distances where ash fallout is a few 

centimetres and it could be exacerbated if rain occurs. 

 agriculture disruption – this effect occurs at least a growing season over most of area 

receiving ash fallout, it also determines long term beneficial changes due to increased 

soil fertility. 

 contamination of drinking water and problems in waste disposal – potential problems 

associated with water supply, such as blockage of sewage, etc. 

 problems in aviation – aircrafts could have visibility problems for landing and take-off, 

damages on aircraft engines and instrumentation during the flight. 

 damage of power generation (thermal, wind and photo-voltaic installations). 

 damage of power distribution – electric pylons and power-lines might be susceptible to 

ash loading and associated electrostatic effects, possibly exacerbated by wet fallout. 

 health risk – due to climate change, dry-fog and acid aerosol air pollution and ozone 

depletion. 

Rasà et al. [23] gave a qualitative description of some consequences of ash fallout, such 

the damage due to the load on the roof of buildings, the clogging of gutters and  the 

abrasion of moving parts of machines and electric motors. Baxter et al. [24] and Scandone 

et al. [25] analysed malfunctions of water treatments (industrial or civil installations) and 

accidents during the transportation of hazardous materials due to the slippery roads. Wilson 

et al. [26] discussed about the impact of volcanic ash on critical infrastructure, such as the 

electrical distribution networks and the civil aviation system. Zais [27] reported about the 

catastrophic impact on the wastewater treatment plants of the Mt. St. Helens eruption 
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(1980). In 2010, Milazzo and co-author’s [22] began studying Na-Techs triggered by ash 

fallout and to analyse their impact on atmospheric storage tanks.  

Potential volcanic Na-Techs could also be triggered by workers affected by the impact of 

the volcanic event while executing their works in the establishment close to the volcano. 

1.5 Dissertation objectives and outline 

This research aimed at the: 

 extention of Na-Tech Risk analysis with particular attention to volcanic Na-Tech and the 

definition of vulnerability models; 

 implementation of the standard QRA (Quantitative Risk Assessment) procedure to 

include volcanic Na-Tech; 

 Definition of methods for the identification of malfunctions in wastewater treatment 

under the impact of volcanic phenomena; 

 definition of semi-automatic procedures for the production of the vulnerability maps 

using a GIS software. 

The performed activities can be summarised in the following. First the vulnerability was 

modelled according to two tiers: 

 a deterministic approach based on threshold value of physical parameters; 

 a semi-probabilistic approach founded on exceedance probability of threshold limit of 

physical parameters. 

The following step was the selection of some vulnerable elements: storage tanks, filters and 

lifeline (screens and grit removals of wastewater treatment plants). These were analysed in 

details The ash fallout was the natural phenomenon investigated in this thesis, this natural 

phenomenon was characterised. 

Finally, after the development of vulnerability models and their application, it was possible: 

 the risk analysis of facilities at major risk; 

 the analysis of the condition causing the damage/malfunction for lifelines; 

 the development of procedures for emergencies’ management; 

All the developed procedures were implemented and properly automated into a GIS 

(Geographical Information System). To this scope, the ArcGIS software of ESRI was used. 
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2  
 
 
 

Volcanic Hazards 
 

 

 

After an eruption, several volcanic phenomena can occur, whose impact on the territory is a 

potential hazard as it negatively affect human health and cause damage for structures and 

infrastructure. This Section gives a brief overview on volcanic hazards, amongst them one 

was selected to be analysed as potential initial cause of Na-Techs. 

2.1 Volcanic eruptions 

A volcano (Figure 2.1) is a rupture on the Earth’s crust that allows lava, volcanic ash and 

gases escaping from the magma chamber below the surface (eruption). 

 

 

Figure 2.1. Representation of a volcano [28] 
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The eruption occurs when the pressure in the magma chamber forces magma up to the 

crater. Some magma will also be forced out from the secondary vents which can be at the 

side of the volcano [28]. 

Two main types of volcanic activity exist (Figure 2.2): explosive, causing the emission of 

fragmented material (pyroclastic flow or ash cloud) and effusive, which produces lava flows. 

 

 

Figure 2.2. Volcanic activity types [29]. 

In general, eruptive scenarios are classified according to the Volcanic Explosivity Index 

(VEI) [30], which is a common used criterion to describe the severity of volcanic eruptions. 

The VEI takes into account the volume of ejected material, the column height and the 

duration of the phenomenon [31]. Figure 2.3 illustrates the VEI classification, each eruption 

may be assigned a VEI between 0 and 8. Eruptions with VEI ≤ 3 usually involve lava flows 

and/or minor explosive activity and their effects are generally localised. Events with VEI 4 or 

5 often disrupt regional economies, while eruptions of VEI over 6 may impact on the global 

climate. 
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Figure 2.3. Volcanic Explosivity Index (VEI) scheme [32]. 

2.1.1 Explosive eruption 

Explosive eruptions occur when a cooler and more viscous magma reaches the surface. 

Dissolved gases cannot easily escape, thus pressure may build up until gas explosions 

blast rock and lava fragments into the air. 

2.1.1.1 Pyroclastic flow 

The most powerful volcanic eruption gives a pyroclastic flow. It is a fast-moving current of 

hot gas and rock, which reaches speeds up to 700 km/h, the gas can reach temperatures of 

about 1000°C. Pyroclastic flows normally travel downhill or spread laterally under gravity. 

Their speed depends upon the density of the current, the volcanic output rate and the slope. 

This type of eruption took place at Vesuvius in Italy in 79 a.d.  

2.1.1.2 Volcanic ash emission 

Volcanic ash emission is produced by explosive eruptions. The diameter of particles is 

smaller than 2 mm (<0.063 mm for fine ash and between 0.063 and 2 mm for coarse). 

Depending on the velocity of formation, the ash is made of various proportions of glassy 

(non-crystalline), crystalline and lithic particles. The density may vary within the following 



Chapter 2. Volcanic Hazards 

 

 
10 

 

ranges: 700  1,200 kg/m3 for pumice, 2,350  2,450 kg/m3 for glass shards, 2,700  3,300 

kg/m3 for crystals, and 2,600  3,200 kg/m3 for lithic particles [33]. Denser particles are 

deposited close to the crater, fine glassy material and pumice shards fall at distal locations. 

The abrasiveness of the volcanic ash is a function of the material’s hardness and the shape 

of particles. Small voids are typically contained in glassy particles, these are known as 

vesicles and are formed by the expansion of magmatic gas before the magma solidification. 

Ash particles have a varying degree of voids, which gives them an extremely high surface 

area to volume ratios. 

Volcanic particles naturally tend to bind giving aggregates. As reported by volcanologists 

[34], the information on the aggregation processes are still either lacking or very incomplete. 

It seems that for dry particles electrostatic or van der Waals forces lead to successful 

coalescence, although such dry clusters are weakly bound and quickly collapse landing on 

the ground. In presence of water (such as the rain) much stronger particle bonds result from 

short-range surface tension forces. The presence of dissolved salts establishes more 

durable aggregations, when evaporation leads to enhanced concentrations, crystal bridges 

greatly increase the strength of the inter-particle bonds. 

2.1.2 Effusive eruption 

Effusive eruptions occur when magma goes upward the magma chamber, reaches the 

surface and dissolved gases easily escapes. The consequence of an effusive eruption is a 

lava flow. 

2.1.2.1 Lava flow 

Lava flow is the moving of the molten rock expelled by a volcano during an eruption with a 

low VEI, simply named effusive eruption. How far a lava flow travels depends on the flows 

temperature, silica content, extrusion rate and land slope. A cold lava flow will not travel far, 

neither that one having high silica content; such a flow would have a high viscosity (a high 

resistance to flow). A basalt flow (like those originated from eruptions in Hawaii) has low 

silica contents and low viscosities, thus it can flow for long distances and have a thickness 

of 10 m. Whereas, more silica-rich flows can move at rates of a few to hundreds meters per 

hour and have thicknesses of several tens of meters. If a lava flow is channelised or travels 

underground in a lava tube then the distance it travels is greatly extended [35]. 

Hence lava flows appear less dangerous for human life than other volcanic hazards; the 

impact on structures, traffic and communication are also even more manageable because 

the slow movement of the flows allows mitigation strategies to be employed (i.e. diversion 
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measures, cool advancing front with water or disruption of source or advancing front of lava 

flow by explosives may be taken in principle).  

2.2 Other types of volcanic activity 

There are other types of volcanic activity which could also be more dangerous than volcanic 

eruptions, these are lahars, tsunami, earthquakes. 

2.2.1 Lahar 

Lahar is an Indonesian term that describes a hot or cold mixture of water and rock 

fragments flowing down the slopes of a volcano. When moving, a lahar looks like a mass of 

wet concrete that carries rock debris ranging in size from clay to boulders more than 10 m in 

diameter. Lahars vary in size and speed. Small lahars are less than a few meters wide and 

several centimeters deep, they may flow a few meters per second. Large lahars are 

hundreds of meters wide and tens of meters deep, these can flow several tens of meters 

per second (too fast for people to outrun). 

As a lahar rushes downstream from a volcano, its size, speed and amount of water and 

rock debris it carries constantly change. The surge of materials often erodes rocks and 

vegetation from the side of the volcano and along the river valley it enters. By eroding rock 

debris and incorporating additional water, lahars can easily grow to more than 10 times their 

initial size. But as a lahar moves farther away from a volcano, it will eventually begin to lose 

its heavy load of sediment and decrease in size. 

Eruptions may trigger one or more lahars directly by quickly melting snow and ice on the 

volcano or ejecting water from a crater lake. Sometimes lahars are formed by intense 

rainfall during or after an eruption; rainwater can easily erode loose volcanic rock and soil 

on hillsides and in river valleys. Some of the largest lahars begin as landslides of saturated 

and hydrothermally altered rock on the flank of a volcano or adjacent hillslopes. Landslides 

are triggered by eruptions, earthquakes, precipitation or the unceasing pull of gravity on the 

volcano [36] . 

2.2.2 Tsunami 

A tsunami is a huge sea wave or is also known as a seismic sea-wave. It is very height and 

has extreme power. A tsunami is usually formed when there is quick ground displacement. 

After, the water column is pushed up above the average sea level. A volcanic tsunami 

(Figure 2.4) can result from violent submarine explosions, but it can also be caused by 

caldera collapses, tectonic movement from volcanic activity, flank failure into a water source 
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or pyroclastic flow discharge into the sea. As the wave is formed, it moves in a vertical 

direction and gains great speeds in deeper waters and can reach speeds as fast as 1000 

km/h. In shallow water it can still be as fast as 320 km/h. The waves travel over the 

continental shelf and crash into the land. Anyway, this power does not decrease when they 

hit land, there is an extreme amount of energy when the water travels back towards its 

source. Approximately 5 % of tsunamis are formed from volcanoes and approximately 16.9 

% of volcanic fatalities occur from tsunamis [37]. In December 2002 a tsunami was 

triggered by a flank collapse of Mt. Stromboli (Aeolian Islands, Italy). 

 

 

Figure 2.4 Example of how a volcanic eruption can generate a tsunami.[38] 

2.2.3 Earthquake 

Some earthquakes are related to volcanic activities. Most earthquakes generated by such 

activities are caused by the movement of magma. The magma exerts pressure on the rocks 

until it cracks. Then the magma squirts into the crack and starts building pressure again. 

Every time the rock cracks, it makes a small earthquake. These earthquakes are usually 

weak. Once the magma is flowing through the system, constant earthquake waves are 

recorded, they are called harmonic tremor. Earthquakes exhibiting volcanic tremor warn of 

an impending eruption so that people can be evacuated to safety areas. The volcanic 

tremor signal was successfully used to predict the 1980 eruptions Mount St. Helens and the 

1991 eruption of Pinatubo [38]. 

Other earthquakes are produced by stress changes in solid rock due to the injection or 

withdrawal of magma and are called volcano-tectonic earthquakes. These can cause land 

to subside and can produce large ground cracks. These phenomena can occur as rock is 

moving to fill in spaces where magma is no longer present. Volcano-tectonic earthquakes 

do not indicate that the volcano will be erupting but can occur at any time. Volcano-tectonic 

earthquakes can cause damage to manmade structures and landsliding [35]. 
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Approaches for Equipment 
Vulnerability Modelling 

 

 

 

As described in Section 1.2, the vulnerability of a system can be determined based on its 

exposure, accessibility, susceptibility to be damaged under the impact of a natural hazard, a 

technological incident as well as a wilful intrusion or a terrorist action and resilience [39]. In 

the context of natural-technological events, vulnerability models allow estimating the 

probability of equipment damage under the impact of a natural phenomenon. These 

mathematical models can also be used to support decision making. 

Vulnerability models, which will be developed in this thesis, assess the susceptibility of 

industrial equipment to be damaged due to volcanic ash fallouts. The focus is on two 

equipment typologies: those processing or storing hazardous substances and other 

industrial equipment used for air intake and wastewater treatment. The implementation of 

vulnerability models for the first equipment type aims achieving the goal of the integration of 

Na-Tech scenarios in the standard procedure for risk analysis; the conditions leading to 

malfunctions and efficiency losses will be defined for the second type. The choice of 

investigating volcanic ash fallout as initial cause of Na-Techs is due to the huge impact of 

ash dispersions, whose extent could also, in some cases, reach a continental dimension. 

This apparently rare phenomenon is actually very likely to occur in Europe, in particular in 

Italy and in Iceland. Significant ash fallout occurred in 2010, during the eruption of the 

Eyjafjallajökull volcano (Iceland); it dramatically extended at European level. 

From a generic point of view, approaches for the vulnerability modelling can be divided into:  

1. Determinist approaches 

2. Semi-probabilistic approaches 

3. Probabilistic (stochastic) approaches 
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The vulnerability modelling usually begins by applying a deterministic approach. It uses 

simple models and certain values, thus it permits estimating a threshold value of a physical 

parameter, which causes the equipment damage. A probabilistic assessment uses more 

complicated modelling approaches that depend on distributions of data for input key 

parameters. The output of a probabilistic assessment is a distribution of potential values, 

this results in a greater ability to characterise variability and uncertainty [40]. Probabilistic 

approaches are generally used only for higher-tier assessments, whereas the use of semi-

probabilistic methods is often more diffused. A brief description of deterministic, semi-

probabilistic and stochastic approaches is given below; then, the proposed approach for the 

estimation of equipment vulnerability under the impact of volcanic ash fallout is described. 

3.1 Deterministic approach 

A deterministic approach represents a mathematical model in which outcomes are precisely 

determined through known relationships between states and events without any random 

variation. By using such models, a given input will always produce the same output. Thus a 

deterministic model assumes certainty in all aspects [41]. 

A deterministic model mathematically is a representation y = f(x) that allows making 

predictions of y based on x. This type of model is deterministic because y is completely 

determined if x is known. In real life, it is extremely rare to completely determine a y using 

an x because unexpected conditions often determine variability. In such cases probabilistic 

(stochastic) models must be used. It must be pointed that a deterministic assessment is 

relatively economical. 

In the physical and engineering sciences, a common think is that relationships are more 

often deterministic, but this is not true. An example where the function is clearly not 

deterministic is the following: the maximum stress that a dam can bear cannot perfectly be 

predicted from the thickness of the concrete; it depends on the type and preparation of 

concrete, the dam shape and its environment and the specific physical and structural make-

up of the given concrete. This means that it is not possible to characterise this information 

to achieve a deterministic prediction of the maximum stress level that the dam can bear 

[42]. 

3.2 Probabilistic approach 

A probabilistic model incorporates aspects of the random variation and is represented as Y 

= p(y), this notation specifically means that Y is generated at random from a probability 

distribution whose mathematical form is p(y). This means that each time the model runs, it 
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likely gets different results, even with the same initial conditions. Probabilistic models allow 

predicting aggregate outcomes, if a large number of y values are observed. 

3.3 Semi-probabilistic approach 

A semi-probabilistic approach has both deterministic and probabilistic components. This 

model is represented by Y = p(y|x), which states that, for a given x, Y is generated at random 

from a probability distribution whose mathematical form is p(y|x). 

3.4 Uncertainty 

In vulnerability modelling, the uncertainty analysis is an important step. It provides a 

quantitative estimate of the value ranges for an outcome. These ranges are attributable to 

the variability and uncertainty in the input data and the uncertainties in the structure of any 

models used to define the relationship between exposure and effects [43]. 

An important issue in the uncertainty analysis is how to distinguish between the relative 

contribution of variability (i.e. heterogeneity) and uncertainty. Variability refers to quantities 

that are distributed within a defined population and cannot be represented by a single value, 

therefore it is only possible to determine with precision mean, variance, etc. In contrast, 

uncertainty or model-specification error (e.g., statistical estimation error) refers to a 

parameter that has a single value, which cannot be known with precision due to 

measurement or estimation error. Variability and uncertainty may be formally classified as 

follows: (i) type A uncertainty that is due to stochastic variability with respect to the 

reference unit of the assessment question, and (ii) type B uncertainty that is due to lack of 

knowledge about items that are invariant with respect to the reference unit of the 

assessment question. 

 

3.5 Equipment vulnerability modelling to damage due to volcanic ash fallout 

Figure 3.1 shows a simple flow-chart of the procedure developed in this thesis, which allows 

estimating and representing the equipment vulnerability to the given natural phenomenon 

[8]. 
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Figure 3.1. Flow-sheet for vulnerability representation 

According to this approach, the first step is the selection of the volcanic phenomenon, which 

has to be proper characterised. In this thesis the volcanic ash fallout was analysed as 

potential natural phenomenon. Then given the presence of vulnerable equipment at a 

certain location around the volcanic crater, the failure mode and a physical parameter, 

(intensity variable) related to the natural phenomenon, causing the damage, must be 

identified. Afterwards, either the threshold limit of the physical parameter and the probability 

of exceeding this limit must be quantified. The vulnerability mapping is possible by 

combining threshold limits and exceedance probabilities, through a GIS (Geographical 

Information System) software.  

The application of the developed approach could be deterministic, semi-probabilistic or 

probabilistic, further details related to its application to the study of Na-Techs triggered by 

volcanic ash fallout will be given in the following chapters. 

3.6 Risk assessment framework 

As introduced above, the implementation of vulnerability models for equipment, which 

processes or stores hazardous substances, aims achieving the goal of the integration of 

Na-Tech scenarios in the standard procedure for risk analysis (QRA, Quantitative Risk 

Assessment) shown in Figure 3.2. 
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Figure 3.2. Quantitative Risk Assessment  

An attempt to extent the standard procedure of Figure 3.2, to account for Na-Techs, was 

made by Antonioni et al. [44], it is schematised in Figure 3.3. Some steps were added to the 

standard procedure, such as step 1, 3, 4 and 5. These additional steps start with the 

characterisation of the natural phenomenon, then the type of equipment damage, caused by 

the natural phenomenon and leading to the release of hazardous substances, has to be 

identifies. Finally it is necessary to estimate the frequency and the consequences of the 

subsequent scenarios. 
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Figure 3.3. Flow-chart of the extended QRA procedure  

 

 

 

 



Chapter 4. Equipment Vulnerability Models 

 

 
19 

 

4  
 
 
 

Equipment Vulnerability Models 
 

 

 

Vulnerability models were developed for equipment processing and storing hazardous 

substances and those used for air intake and wastewater treatment. Some facilities were 

selected with the aim to estimate the potential effects of volcanic ash accumulation, these 

are the following: 

 atmospheric storage tanks (fixed and floating roof tanks); 

 air intake filters; 

 fine screens and grit removal systems included in primary wastewater treatment. 

After a short description of the main equipment characteristics, their failure modes under the 

impact of the natural phenomenon and vulnerability models (which were implemented 

according to the approach given in Section 3.5) are illustrated. 

4.1 Atmospheric storage tanks 

Atmospheric storage tanks can be classified in fixed and floating roof tanks. They have size 

ranging from 2 to 60 m diameter or more. They are generally installed inside containment 

basins in order to contain spills in case of tank ruptures. Fixed roof tanks can be used for 

many products, such as crude oil, gasoline, fuel oil, water, etc. Floating roof tanks are used 

to minimize product loss by evaporation and to increase safety by minimizing the vapour 

space between the roof and liquid. A reliable drainage system is used to prevent the 

accumulation of rainwater in floating roof tanks. 

The potential damage for atmospheric storage tanks, with respect to volcanic ash fallout, is 

correlated to the load on the roof, the abrasiveness and corrosiveness of the ash (mainly 

due to adsorbed acid gas). The abrasiveness can damage the rubber seals, while storage 

tanks and their roofs are usually coated with protective paint in order to prevent corrosion. 
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The only potential damage, which has been analysed in this thesis, is associated with the 

accumulation of material. 

4.1.1 Fixed roof tanks 

Fixed roof tanks have a cylindrical shape with the axis oriented perpendicular to the 

foundation, anyway, different type (shape) of fixed roof exist. A typical fixed roof tank 

consists of a cylindrical steel shell with a cone or dome shaped roof that is permanently 

fixed to the tank shell, Figure 4.1 shows some examples. Vapour emissions from these 

tanks vary with respect to the vessel capacity, vapour pressure of the stored liquid, 

utilization rate of the tank and atmospheric conditions at the tank location. To facilitate 

sliding of rain, fixed roofs have a very light slope. 

 

 

Figure 4.1. (a) Cone Roof, (b) Dome Roof, (c) Hanging Roofs, (d) Umbrella Roof, (e,f) Fixed Roofs 
(Dome Or Cone) With Internal Floating Roof. 

The ash accumulation could cause structural damage to fixed roof; a strong similitude can 

be seen considering the effects of the snow load. 

4.1.2 Floating roof tanks 

Floating roof tanks (Figure 4.2) are classified as single deck or double deck. As given in 

[45], single deck floating roofs have an annular ring of pontoons providing buoyancy and a 
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single membrane of plates in the centre. These roofs are suitable for most applications 

except for the largest diameter tanks. Double deck floating roofs consist of two separate 

steel membranes with an air space between them. The air space is divided into different 

compartments guaranteeing buoyancy even if the lower membrane is ruptured. They are 

suitable for all sizes of tanks, especially in areas of frequent high wind speed or high 

temperature. 

 

 

Figure 4.2. Section of a generic floating roof tanks. 

This work is mainly focused on double-deck floating roof storage tanks because this type is 

the most used for flammable materials. The ash load on floating roof could cause its sinking 

or capsizing. 

4.2 Air intake filters 

In 2002, the European Committee for Standardization, Technical Committee 195, Work 

Group 1 (CEN/TC195-WG1) established a new standard for general ventilation filters (EN 

779:2002). Member countries of CEN (Comité Européen de Normalisation) are obliged to 

issue their own national version of this standard within the existing framework of their own 

national standards organisations. Filters (Figure 4.3) are classified according to their 

efficiency or arrestance (Em or Am) under the following test conditions: the air flow shall be 

0.944 m3/s (3400 m3/h) if the manufacturer does not specify any rated air flow rate. In the 

Table 4.1, the classification EN779 for air intake filters is reported (see EN779:2012). 
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Figure 4.3. Air filter system 

Table 4.1. Air filter classification (EN779:2012) 

Class Final 

Pressure 

Drop (Pa) 

Average arrestance 

(Am) of synthetic 

dust (%) 

Average efficiency 

(Em) of 0.4 µm 

particles (%) 

   Minimum 

Efficiency for 0.4 

μm particles (%) 

G1 250 50 < Am < 65 -  - 

G2 250 65 < Am < 80 -  - 

G3 250 80 < Am < 90 -  - 

G4 250  90 < Am - - 

M5 450 - 40 < Em < 60  -  

M6 450 - 60 < Em < 80  -  

F7 450 - 80 < Em < 90 35  

F8 450 - 90 < Em < 95 55 

F9 450 - 95 < Em 70 

 

Another filter type is at High-Efficiency Particulate Arrestance (EN1822:2009) or simply 

named HEPA (Table 4.2). These filters must satisfy certain standards of efficiency, such as 

those set by the United States Department of Energy (DOE). To be qualified as HEPA, air 

filters must remove (from the air that passes through them) 99.97% of particles having size 

of 0.3 µm or larger. Filters are classified, according to results of tests, in the following 

ranges: E10 - E12 for EPA (Efficiency Particulate Air Filters), H13 - H14 for HEPA (High 

Efficiency Particulate Air Filters) and U15 - U17 for ULPA (Ultra Low Penetration Air Filters) 

[46]. As shown in Table 4.2, HEPA filters are classified based on the MPPS, which is the 

Most Penetrating Particle Size; MPPs are determined according EN1822:2009. 

Filters are extensively used in buildings to remove particles from incoming outdoor air and 

from recirculated indoor air. Filters were historically installed to reduce the accumulation of 

deposited particles on heating, ventilating and air conditioning equipment which diminished 
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airflow rates and impeded heat transfer. Within the last two decades, the potential benefits 

to health have been increasingly recognised as a primary purpose of filtration [47]. 

Table 4.2. Classifications of high-efficiency filters. 

Filter Classification Efficiency (%) at the MPPS Penetration (%) at the MPPS 

Overall Value Local Value Overall Value Local Value 

E10 > 85 - 15 - 

E11 > 95 - 5 - 

E12 > 99.5 - 0.5 - 

H13 > 99.95 99.75 0.05 0.25 

H14 > 99.995   99.975 0.005 0.025 

U15 > 99.9995 99.9975 0.0005 0.0025 

U16 > 99.99995   99.99975 0.00005 0.00025 

U17 > 99.999995 99.9999 0.000005 0.0001 

 

Volcanic ash dispersions can determine accumulation of material on the filter surface, which 

clearly can lead to its partial clogging or to the extreme damage, i.e. its rupture. 

4.3 Wastewater treatments 

Water is a very valuable commodity, for this reason water supplies must be preserved and 

protected. After its use, it must be purified and reused. The water purification is made 

through a wastewater treatment plant. The general principle is to remove/reduce the 

following pollutants from the sewage: 

 Suspended solids – physical particles that can clog channels as they settle under 

gravity; 

 Biodegradable organics – materials that can serve as food for microorganisms; 

 Pathogenic bacteria and other disease – these are most relevant if water is used for 

drinking or people would be in close contact with it; 

 Nutrients, including nitrates and phosphates – these can lead to high concentrations of 

unwanted algae, which can themselves become heavy biodegradable organic loads. 

A widely used terminology refers to three levels of wastewater treatment (WWT), as shown 

in Figure 4.4, these are primary, secondary and tertiary (or advanced). 
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Figure 4.4. Wastewater Treatment plant (adapted from [48]). 

Each level of treatment is briefly described below: 

 Primary (mechanical) treatment deals with the removal of gross, suspended and 

floating solids from raw sewage. It includes screening to trap solid objects and 

sedimentation by gravity to remove suspended solids. This level is also referred to as 

mechanical treatment, although chemicals are often used to accelerate the 

sedimentation process. 

 Secondary (biological) treatment removes the dissolved organic matter that escapes 

primary treatment, by means of microbes consuming the organic matter as food and 

converting it to carbon dioxide, water and energy for their own growth and reproduction. 

The biological treatment is followed by additional settling tanks (secondary 

sedimentation) to remove more of the suspended solids. 

 Tertiary treatment is simply an additional treatment, which can remove more than 99% 

of all the impurities from sewage, producing an effluent of almost drinking-water quality. 

The related technology is very expensive, requiring a high level of technical know-how 

and well trained plant operators, a steady energy supply, chemicals and specific 

equipment. 
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This thesis focuses on the identification of the conditions leading to failures in primary 

treatments. The main equipment in a typical primary treatment includes screens, 

comminutors/grinders and grit removal. Solids in the wastewater can interfere with the 

downstream processes (biological and chemical treatments) or may also cause mechanical 

wear and increase maintenance on the equipment. The main failure modes, associated with 

the presence of volcanic ash in the raw sewage, were identified  by an extensive literature 

analysis [49]; with reference to the primary treatments the most relevant failure modes were 

identified in screens and grit removal system. 

4.3.1 Screens 

Screening (Figure 4.5) is the first operation in wastewater treatment. This process 

essentially removes large non-biodegradable and floating solids (rags, papers, plastics, tins, 

containers and wood), which frequently enter in the treatment system. An efficient removal 

of these constituents will protect the downstream facilities from possible damages, 

unnecessary wear and tear, pipe blockages and the accumulation of unwanted material that 

will interfere with the subsequent processes. 

Screens may be manually or mechanically cleaned; older and smaller treatment plants use 

manually cleaned screens. Coarse screens remove large solids and debris and typically 

have openings of 6 mm or larger. Fine screens are used to remove material that may cause 

operation and maintenance problems in downstream processes, their typical opening sizes 

are 1.5 to 6 mm. Very fine screens with openings of 0.2 to 1.5 mm placed after coarse or 

fine screens can reduce suspended solids to levels near those achieved by primary 

clarification. Modern plants sometimes use both coarse screens and fine screens.  
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Figure 4.5. Coarse screen. 

After volcanic ash fallouts, screens could clog due to ash deposit formation, this may occur 

when the particles’ size in raw stream is greater than their openings. The malfunction is 

underlined by flow-rate variability (reduction). 

4.3.2 Grit chambers 

Fine screens are not always included in wastewater treatments, thus the removal of small 

particles is often provided by grit chambers. With respect to grit removal systems, grit is 

traditionally defined as particles larger than 0.21 mm and with a specific gravity (ratio of the 

material density to the density of water) greater than 2.65 [50]. Equipment design was 

traditionally based on removal of 95 % of these particles but, after the recent recognition 

that smaller particles must be removed to avoid damaging downstream processes, many 

modern systems are capable of removing up to 75 % of 0.15 mm material [51]. Grit removal 

facilities typically precede primary clarification and follow screening and 

comminuting/grinding (reducing the size of coarse solids).  

The main types of grit removal include aerated grit chambers, vortex-type grit removal 

systems, horizontal flow grit chambers (velocity-controlled channel) and cyclones (cyclonic 

inertial separation). 

In some cases, due to the characteristics of the volcanic ash, grit removals cannot give a 

complete deposition of particles, during the stream’s passing in the channels. This causes 

abrasion and wear of mechanical equipment, grit deposition in pipelines and accumulation 

in anaerobic digesters and aeration basins. 
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4.3.2.1 Horizontal flow grit chambers 

In this thesis only horizontal flow grit chambers have been studied (Figure 4.6), these are 

the oldest type of grit removal. Grit is removed by maintaining a constant upstream velocity 

of 0.3 m/s. In this system, heavier grit particles settle to the bottom of the channel, while 

lighter particles remain suspended and are transported out of the channel. Grit that does not 

require further classification may be removed with an effective flow control [52]. Proportional 

weirs or rectangular control sections are used to vary the depth of flow and keep the 

velocity of the flow stream at a constant 0.3 m/s. The length of the grit chamber is governed 

by the settling velocity of the target grit particles and the flow control section-depth 

relationship. An allowance for inlet and outlet turbulence is added. The cross sectional area 

of the channel is determined by the rate of flow and the number of channels. 

 

 

Figure 4.6. Horizontal flow grit chambers. 

4.4 Failure modes of fixed roof tanks 

The modelling of vulnerability of fixed roof tanks was deterministically made by Salzano and 

Basco [53], based on an analogy with the current studies of structural damages due to snow 

loads. Thus the following threshold limits are adopted: 

 1200N/m2 (122 kg/m2) for light damage (API 650 [54]; BS 2654 [55]); 

 3500 N/m2 (357 kg/m2) for structural damage (API 650 [54]); 

 7000 N/m2 (714 kg/m2) for collapse [53]. 

According to the API guideline, a load of 1205 N/m2 is allowed on a roof with a slope less 

than 30°, for more highly inclined roofs a maximum load of 720 N/m2 is possible.  

4.5 Failure modes of floating roof tanks 

The study of the problem of floating bodies and their stability has a history dating back to 

the work of Archimedes [56, 57]. 
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Due to ash accumulation on floating roof, its sinking or capsizing could occur. These failure 

modes were studied by Milazzo et al. [58]. 

4.5.1 Sinking a floating roof 

In order to sink a floating roof (double deck), Archimedes Principle requires that the 

combined weight of the floating roof (Mroof) and the ash deposit (Mash) displaces a volume of 

liquid (Vdisp) greater than that of the roof, or in the limiting case: 

  (1) 

where: δ = depth of the roof (m); R = radius of the roof (m). 

The weight of displaced liquid must be equal to the combined weights of the roof and the 

ash deposit: 

  (2) 

where: ρliquid = density of the liquid (kg/m3).  

Assuming the ash deposit to have a density ρash and to be a cylinder with radius R and 

height h:  

  (3) 

  (4) 

where: δroof = immersion depth of the roof in the absence of ash (m). 

Equation (2) may be rewritten as: 

  (5) 

4.5.2 Capsizing a floating roof 

Euler gave a general criterion for floating body stability based on the couple produced by 

the weight acting vertically down through the centre of gravity and the buoyancy force acting 

vertically upwards through the centre of buoyancy (B) [56]. In this Section, Euler’s method 

has been applied to calculate the minimum weight that must be added to the floating roof in 

order to capsize it. The floating body initially has the gravity and buoyancy forces acting 

along a vertical line which passes through the point located at the centre of the bottom of 

the floating roof Figure 4.7(a). The point M of Figure 4.7(b) is the metacentre, which is 

defined as the intersection point between the direction of the initial buoyancy force and the 

direction of the same after the perturbation of the initial conditions.  
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Figure 4.7. The floating body 

 

The metacentre height (zM) is the vertical distance between the metacentre and the centre 

of gravity (G) and is defined as: 

  (6) 

where: I = moment of inertia of the body in the flotation plane (m4); Vimm = immersed volume 

(m3). 

For a cylinder:  

  (7) 

and  

  (8) 

where: δimm = depth of immersion (m). 

Thus 

  (9) 
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where: (zB) = buoyancy centre height (m). 

The floating body is stable if the metacentre lies above the buoyancy centre ( ). 

According to these concepts, it is possible to define the conditions when the roof capsizes. 

It is necessary to know the weight which must be applied to a point on the edge of the roof 

(minimum weight) and, then, given a certain distribution of the ash on it, the weight causing 

the capsizing can be calculated. The calculation procedure is described elsewhere [58], in 

this paper it has only been applied. 

4.6 Failure modes of air intake filters 

Ash fallout on filter surface can clearly lead to its partial clogging or to the extreme damage, 

i.e. its total blockage (rupture). The clogging of a filter is caused by the formation of a 

deposit on its filtering surface. It depends on the characteristics of the system (material, 

diameter of the fibres and weaving, density, etc.) and on the characteristics of the ash (size 

distribution and concentration in the air). Unfortunately, to define the conditions for the 

clogging is not simple because the dispersion of ash is a complex phenomenon and is 

closely related to the local weather conditions, which vary considerably during the eruption. 

Each filter has an operating limit which is identified through a threshold value for the 

pressure drop across its surface. The pressure drop is due to the resistance of the filtering 

surface to the air flow; when the filter is clean it depends exclusively on its characteristics 

and, while operating, it will increase due to the accumulation of ash. The operating limit is 

also expressed as a weight of the formed deposit, as given by the manufacturer.  

In order to calculate the pressure drop due to the gas-solid (named dusty gas) flow in the 

system, an analogy with packed columns has been used. As shown by Bird et al. [59] the 

correlation of Ergun [60] can be applied: 
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where: (Po – PL) = pressure drop (Pa); ε = void fraction (e.g. the fraction of space in the filter 

not occupied by the material) (dimensionless); df = average equivalent diameter of the filter 

which is considered to consist of smooth rigid spheres (m); L = length of the filtering surface 

(m); μ= average viscosity (kgm-1s-1);  = density of the dusty-gas (kg/m3) (arithmetic mean 

of the property of the fluid between the inlet and outlet of the filter); Go = ·vo is the mass flow 

rate of the dusty-gas through the system (vo is the velocity of the dusty-gas at the inlet) 

(kg/m2s). 
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The model of Ergun gives a direct analytical correlation to calculate the pressure drop but it 

is valid only for relatively small pressure losses, because the mass flow rate Go is constant 

through the column (whereas the velocity changes through the column for a compressible 

fluid). In order to reduce the number of variables involved in the study and generalise the 

results, Equation (11) has been re-arranged in a dimensionless correlation: 

4

7150


x
y    (12) 

where the dimensionless variables, y and x, are defined as: 
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Equation (12) allows determining the pressure drop at the filter outlet when the air contains 

volcanic ash. In order to verify the deviation from the operating conditions of the filter, it is 

then necessary to compare the value of pressure drop calculated with the critical pressure 

drop given by the manufacturer.  

As mentioned above, the deposition of the threshold amount of ash on the filtering surface 

depends on the ash concentration in the atmosphere and the residence time of the cloud. 

The prediction of the amount of the deposit on the filter surface is however very complex 

because the meteorological conditions may vary during the day. In order to achieve the 

estimation of the threshold limit for the clogging, the conservative assumption that the 

emission is a stationary phenomenon has been made. 

The use of such assumption allows calculating the time of clogging (t) for the filter, given the 

presence of a concentrations c of ash. The following equation has been used: 



ashm

t
Q c

  (15) 

where: mash = threshold deposit causing the filter clogging (kg); Q = volumetric flow rate of 

the dusty-gas (m3/s). 

4.7 Failure modes in wastewater treatments 

As previous mentioned, the most relevant identified failure modes with respect to primary 

treatments are the following: 
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 Screens’ clogging when the particles’ size in raw stream is greater than their openings. 

The malfunction is underlined by a variability (reduction) of flow-rate [19]; 

 Incomplete grit removal when ash deposition is not complete during the stream’s 

passing in the channels. 

4.7.1 Conditions for the screen clogging 

The flow-rate variability due to the ash accumulation is correlated to the screen’s pressure 

drop (ΔP); thus the ΔP is the main indicator to underline malfunctions. Given the dimension 

of ash particles, the effects of accumulation should be study for fine and very fine screens, 

anyway it is worth noting that this equipment type is not always included in wastewater 

treatment plants. The ΔP in fine screens can be calculated as suggested by the literature 

[61], then the length of deposit causing the critical pressure drop can be quantified by 

means of the methodology given below. 

The pressure drop in fine screen is given by the following equation [61]: 

2

2

  
       disch s

Q
P

C A   (16) 

where: ΔP = pressure drop (Pa); Cdisch = coefficient of discharge for the fine screen (typically 

this value for clean screens is 0.60, for dirty screens is 0.4 and for very dirty screens is 

0.25); As = effective open area of submerged screen (m2); ρ = fluid (sewage) density 

(kg/m3); Q = volumetric flow rate of the sewage (m3/s). 

The methodology for the estimation of the ash deposit threshold on a fine screen causing 

malfunctions is based on the assumption that the accumulation is a granular bed and the 

sewage represents the fluid passing through it. The literature [62] suggests estimating the 

bed dimension by means of the Darcy’s equation in case of streamline flows and the 

Carman’s equation for transition and turbulent flows. In the fluid dynamic the parameter, 

which permits to determine the flow’s regime, is the Reynolds number (Re): 

Re eq lD u

 

   (17) 

where: Deq = equivalent diameter of the pore space (m); μ = fluid viscosity (kgm-1s-1); ρ = 

fluid density (kg/m3); ul = average velocity through the pore channels (m/s). 

The equivalent diameter and the average velocity through the pore channels depend on the 

characteristics of granular bed, i.e. the specific surface area (S) and the voidage (e): 
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Hence: 

Re
(1 )

u

S e






    

(20) 

where: e = voidage or porosity, it represents the fraction of the volume of the bed which is 

not occupied by solid material (dimensionless); S = specific surface area of the particles, it is 

the surface area of the particles divided by their volume (m−1); u = average velocity of the 

flow (m/s). 

The following rules are given by Coulson et al. [63] to define the regime flows in granular 

beds: 

Re < 10 laminar (or streamline) flow 

Re > 2000 turbulent flow 

According to the Darcy law, the average velocity is directly proportional to the driving 

pressure and inversely proportional to the thickness of the bed: 




  
 tot

K P
Q A

g l
  (21) 

where: Q = volumetric flow rate (m3/s); Atot = cross-sectional area (m2), in this case it is 

effective open area of submerged screen (As); l = thickness of the porous medium (m); g = 

gravity acceleration (m/s2); K = constant, it depends on the characteristics of the porous 

medium (intrinsic permeability, ki) and the fluid characteristics (viscosity and density) (m/s). 

The Carman’s equation is: 

 
 3

2 2

' 1

1l

PR e

u S e l u 


  
  

  (22) 

where: R’ = component of the drag force per unit area of particle surface in the direction of 

motion (kgm-1s-2). 

The (R’/ρ·ul
2) of the Carman’s equation represents the friction coefficient, which is 

dimensionless and is correlated to the Reynolds number as follows: 

1 0,1
2

'
5 Re 0.4 Re

l

R

u
     (23) 
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4.7.2 Conditions for the incomplete particles removal in horizontal flow grit 

chambers 

The theoretical base of the solid removal from a liquid in grit chambers is the derivation of 

the terminal settling velocity (ut). Assuming a low concentrated dispersion of particles, each 

particle settles discretely as if it is alone (unhindered by the presence of other particles). 

Starting from the rest, the settling velocity (us) in the fluid of the particle under gravity 

increases with the particle density; moreover it is accelerated until the resistance to the flow 

from the fluid equals the weight of the particle, then the settling velocity remains constant 

and this is named terminal settling velocity [62]. 

Given a fluid at constant temperature and a particle with constant settling velocity, the 

terminal settling velocity depends on various factors related to the particle and the fluid and 

is derived by balancing the forces acting on the particle (drag, buoyant and gravitational 

forces): 

 
2

2
D t ,p D

p s
C u A

V g


 
  

     (24) 

where: ut,p = terminal settling velocity of a particle with a diameter dp (m/s); Vp = effective 

volume of the particle (m3); g = gravitational constant (m/s2); ρs = particle density (kg/m3); ρ = 

fluid density (kg/m3); CD = drag coefficient (dimensionless); AD = projected area of the 

particle in the flow direction (m2). 

Then the terminal settling velocity is given by the following equation: 

 2  


  


 
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D D
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C A   (25) 

in case of a solid and spherical particle: 

 4

3
s p

t ,p
D

g d
u
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 


  


    (26) 

The terminal settling velocity is not depended on the horizontal and vertical movement of 

the fluid, although in real situation velocity gradients and other factor could affect the 

process [62], whereas the drag coefficient depends on the flow regime surrounding the 

particle. In the fluid dynamics the Reynolds number (Re) is used to identify the flow 

characteristics, thus by assuming the conditions previous described: 

,Re p t pd u

 

  (27) 
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where: μ = fluid viscosity (kg/m·s). 

An extensive review of equations for CD calculation is given by Brown and Lawler [64]. The 

drag coefficient was seen that decreases as the Reynolds number increases, sometimes a 

shape factor is also determined and incorporated in CD to take into account the real particle 

contour. In case of spherical particles, the main equations for CD and ut,p are given in Table 

4.3 (extracted from Coulson et al. [62]). In the laminar regime (region a) the equation for the 

calculation of ut,p is the Stokes’ law and, in the turbulent regime (region c), it becomes the 

Newton’s law. 

Table 4.3. Drag and terminal settling velocity equations [20]. 

Regime  Re CD ut,p 

Laminar 
(region a) 

 Re < 1 24/Re 
 2

18
p s

t ,p
g d

u
 


 


             (Stokes) 

Intermediate 

(region b) 
 1 < Re < 1000 24/Re + 0.44 

 4

3
s p

t ,p
D

g d
u

C

 


  


   

Turbulent 
(region c) 

 1000 < Re < 2·105 0.44 
 

1 75 p s
t ,p

g d
u .

 


 
   (Newton) 

Turbulent 
(region d) 

 Re > 2·105 0.10 
 4

3
s p

t ,p
D

g d
u

C

 


  


   

 

If the settling velocity term is not known, to identify the range in which the motion of the 

particle lies, it must be eliminated from the Reynolds number. To this scope a criterion 

based on the K parameter (dimensionless) is introduced [65], which is defined as: 

  1/3

2p

sg
K d

  


   
  

 
  (28) 

The Stokes’ law is to apply if Re < 1, thus by substituting the proper ut,p in Equation (27) 

 3

2
Re

18
p sd g   



   


   
(29) 

3

Re
18

K
   (30) 

By solving Equation (30), K = 2.6; this means that if K is less than 2.6 the Stokes’ law 

applies. Setting Re = 1,000 and Re = 200,000, after substituting the ut,p from the Newton’s 

law: 
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1.5Re 1.75 K    (31) 

By solving Equation (31), K is respectively equal to 68.9 and 2,360. 

The criterion to choose the proper equation for the calculation of the terminal settling 

velocity is summarised in Table 4.4. Figure 4.8 shows the trend of the terminal settling 

velocity as a function of the particle’s diameter (assuming the ash density equal to 2000 

kg/m3). In the same graph the range of applicability, in term of K, is highlighted by means of 

the lines K = 2.6, K = 68.9 and K = 2360. 

Table 4.4. K parameter and regime flow regions. 

Regime  Re  K 

Laminar (region a)  Re < 1  K < 2.6 

Intermediate (region b)  1 < Re < 1000  2.6 < K < 68.9 

Turbulent (region c)  1000 < Re < 2·105  68.9 < K < 2,360 

Turbulent (region d)  Re > 2·105  K > 2,360 

 

 

Figure 4.8. Terminal settling velocity as a function of the particle’s diameter 

Within the approach mentioned above, drag coefficients and terminal settling velocities of 

Table 4.3 are based on the following assumptions: 
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a) the settling is not affected by the presence of other particles in the fluid (free 

settling); 

b) the walls of the vessel do not exert an appreciable retarding effect; 

c) the effects of particle shape and orientation on drag are not accounted for. 

As discussed in the following, several studies were made to overcome such assumptions. 

When the interference of other particles is appreciable, the process is known as hindered 

settling. Richardson and Zaki [66] stated that in concentrated suspension the drag force on 

a particle will be influenced by the concentration of particles and the terminal settling 

velocity will be a function of the voidage of the suspension as given below: 

 , |

,

1  
nt p C n

p
t p

u
c e

u
  (32) 

where: cp = suspension concentration expressed as volumetric fraction (dimensionless); 

ut,p|cp = terminal settling velocity in hindered condition; e = suspension’s voidage 

(dimensionless); n = empirical exponent dependent on Re. 

Other subsequent studies were related to the quantification of the wall effects, these were 

taken into account by introducing some modifications in the n-value [67]; finally also the 

modelling of the sedimentation process of multi-sized particles was faced [68]. 

To take into account the effect of particle shape and its orientation on drag, two difficulties 

were remarked: the first is that infinite non-spherical shapes exist and the second is that 

each of these shapes is associated with an infinite number of orientations. Then, drag 

coefficients for generic non-spherical particles were defined in [69]. 

Assume a rectangular settling vessel (Figure 4.9), where the sewage is fed (Q = sewage 

flow rate (kg/s); Lv = vessel length (m); Wv = vessel width (m); Hv = vessel height (m)). 

During the flow of the fluid, two zones can be distinguished, the suspension zone and the 

sludge deposit. The following assumptions are imposed: 

a) a homogenous stream, uniformly distributed over the tank cross-sectional area, is 

fed; 

b) the liquid in the feeding zone moves at constant velocity and as a plug flow; 

c) when particles enter the sludge zone (assumed at constant thickness), they exit the 

suspension. 
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Figure 4.9. Rectangular settling vessel. 

The final settling velocity of the particle (u’t,p) is the vectorial sum of the terminal setting 

velocity (ut,p) and the sewage velocity (uf). In these conditions it is possible to define a 

retention time (to) and a critical velocity of settling for the particles (uo). From a theoretical 

point of view, particles with a settling velocity equal or lower than the critical velocity will 

settle out from the vessel at a time equal or greater than the retention time: 

  v
o

f

LV
t

Q u
  (33) 

where: V = vessel’s volume (m3). 

 v
o

o

H
u

t
  (34) 

It must be pointed that the design factors, mentioned above, must be adjusted to account 

for the effects of inlet and outlet turbulence, short circuiting, sludge storage and velocity 

gradient. Then, assuming that particles are uniformly distributed over the entire depth (Hv) of 

the vessel at the inlet, a fraction of particles (Xr) with a terminal settling velocity less than uo 

or equal to uo will be removed: 

,t p
r

o

u
X

u
   (35) 

In a typical suspension a large gradation of particle sizes occurs, thus to determine the 

removal efficiency it is necessary to consider the entire range of ut,p present in the system. 

This can be accomplished by using the results of a sieving analysis to construct a terminal 

settling velocity curve versus X (fraction of particles with less than the stated velocity). The 

total fraction of removed particles is given by: 

  ,
, 1

oX
t p

r total o
oo

u
x X dX

u
      (36) 
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where: Xo = fraction of particles with ut,p ≤ uo (dimensionless). 

The term (1 – Xo) is the fraction particles with a velocity greater than uo, whereas ,
oX

t p

oo

u
dX

u  

is the fraction of particles removed with ut,p ≤ uo. 

4.8 Exceedance probability curves 

After the estimation of the threshold value of the physical parameter (ash load or 

concentration), the exceedance probability must be determined, which is given by the 

probability that, given the occurrence of an explosive eruption with a certain magnitude, the 

physical parameter will exceed the threshold limit. 
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5  
 
 
 

Vulnerability Mapping and 
Emergency Management 

Procedures 
 

 

 

A literature review showed that, beyond the improvement of the knowledge on the modes of 

failure of industrial facilities under the impact of natural phenomena, the development of 

vulnerability maps as tools for decision making is actually necessary. A useful tool for the 

Na-Tech risk mapping and management is a Geographical Information System (GIS). Its 

use allows performing the calculation of the vulnerability of facilities related to each point of 

the territory and the easier management of geographical data (georeferenced data). Further 

it also allows the development of semi-automatic procedures for the vulnerability mapping. 

Using a GIS software it was possible to obtain vulnerability mapping by means 

interpolations of the exceedance probabilities, when these are available for a limited 

number of points related to the territory. Semi-automatic procedures were also developed in 

order to support users in vulnerability mapping and decision making. Emergency 

management procedures for wastewater treatments were also developed. 

5.1 Geographic Information System 

A Geographic Information System (GIS) allows visualising, questioning, analysing and 

interpreting data, to understand relationships, patterns and trends [70]. GIS is a broad term, 

which refers to a number of different technologies, processes and methods. It has many 

applications related to engineering, planning, management, transport/logistics, insurance, 

telecommunications and business. 
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In this work, the use of such technology is fundamental to apply the approaches developed 

(discussed in Chapter 4) to the whole studied area and to produce the vulnerability maps. 

Furthermore, GIS could be useful to share the results with potential stakeholders (i.e. civil 

protection, facilities managers, etc.). Vulnerability maps can be produced by a semi-

automatic geoprocessing procedure, created using the ModelBuilder tool of the GIS 

software.  

5.1.1 Geoprocessing 

The geoprocessing is a GIS operation used to manipulate spatial data. A typical 

geoprocessing operation takes an input dataset (such as a feature class, raster or table), 

performs an operation on that dataset and returns back the result of the operation as an 

output dataset.  

The geoprocessing is a basic function of the GIS software for the processing of 

geographical data, the ModelBuilder is the application which allows creating, editing and 

managing sequences of geoprocessing (models). It also allows feeding the output of one 

model into another one as input. Operations and datasets are the components or elements 

of the model interface and are represented in a flowchart by using different symbols. Some 

examples of geoprocessing tools are shown in Figure 5.1.  

 

 

Figure 5.1. Geoprocessing tools [71]. 
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5.2 Exceedance probability 

The exceedance probability of the threshold limits of the physical parameters is the 

vulnerability related to a given damage. As reported by Woo [72], volcanologists are unable 

to forecast with certainty the characteristics of eruptive event. Thus in order to take into 

account uncertainties, an approach derived from the mathematic of natural catastrophes 

must be used. More specifically, Woo suggested performing Monte Carlo simulations of the 

event of interest to model the ash dispersion, assigning different input conditions which vary 

within pre-defined ranges. A detailed mathematical description is not the scope of this 

thesis, however it can be found elsewhere [72]. 

5.3 Approaches for the vulnerability mapping 

The main difficulty in elaborating vulnerability maps for industrial facilities, in area prone to 

ash fallouts, is that input data is limited because the exceedance probabilities of ash load or 

concentration are usually known for few locations. This means that to achieve the mapping, 

a spatial interpolation method must be used to estimate the probabilities also for the 

locations where these are not known. The choice of the interpolation method is crucial 

because it approximates the spatial representation of the physical phenomenon (in this 

case of the volcanic ash fallout/dispersion) [73]; anyway the quality of the input data is also 

essential to give a reliable estimate. Non-optimal estimates usually are due to: 

 few available points; 

 limited spatial coverage; 

 uncertainty about the location and the value of the measured physical quantity. 

There are several interpolation procedures, each of them characterised by different data 

elaboration, accuracy, sensitivity to parameters variation and degree of smoothness of the 

interpolated surface. These are grouped in two main classes: deterministic methods, based 

on a correlation among neighbouring points whose parameters have an explicit physical 

meaning, and stochastic methods, which relate neighbouring points through a statistical 

correlation [74]. In this study two spatial interpolation methods have been chosen, these are 

the IDW (deterministic) and the Kriging (stochastic) methods. Then, the GIS software 

(developed by Esri, named ArcGIS) has been used to perform the elaborations. 

5.3.1 Spatial Interpolation Methods 

The IDW method assumes that each measurement has a local influence, which decreases 

with the distance; it is based on the following equation: 
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where: z(So) = value to be predicted associated with the location So (prediction point); N = 

number of locations used for the estimation (identification number for the points around the 

prediction point); i = 1, 2, 3, ...; z(Si) = measured value of the variable at the i-th location; 

wi=1/di
2 = weight coefficient for the measured value at the i-th location (di is the distance 

between the i-th point and So). 

The Kriging method is a geostatistical procedure for data interpolation [75, 76]. The model 

takes into account the value of the variable in the other locations and a weight coefficient 

based not only on the distance between the measured points (as the IDW approach), but 

also on the overall spatial arrangement of the measured points. This means that it is based 

on a probabilistic elaboration in order to develop more complex predictive models. The use 

of the Kriging allows including the estimation of the error and the uncertainty associated 

with each prediction [74]. The correlation is:  
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where: λi = weight assigned to each measured value at the i-th location, it is based not only 

on the distance between the measured points and the prediction location but also on the 

overall spatial arrangement of the measured points. 

5.3.2 Semi-automatic procedure for vulnerability mapping 

By means of the ModelBuilder tool, a simple model to elaborate the vulnerability of 

atmospheric storage tanks to volcanic ash deposits and air intake filters to volcanic ash 

dispersion in the atmosphere has been created. It allows a quick vulnerability mapping, 

based on the use of both the interpolation procedures described above in Section 5.2.1. 

Figure 5.2 shows the flowchart of the whole procedure. The model runs in a semi-automatic 

mode and, finally, the geoprocessing model provides the vulnerability maps. The operations 

and the datasets are represented in the flowchart by using different symbols: dark coloured 

rectangles are inputs (locations related to the sample points and exceedance probabilities); 

the other rectangles are outputs (exceedance probabilities mapping); ovals give operations 

to be performed on the input data; the connecting arrows indicate the direction of the 

processing sequence. 
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Figure 5.2. Flowchart of the developed semi-automatic procedure. 

5.4 Procedure for emergency management 

A procedure for the management of wastewater treatment equipment has been 

implemented within the GIS. Figure 5.3 shows a simply scheme of the proposed 

methodology for the management of Na-Techs triggered by volcanic ash fallouts. 

Firstly two databases must be constructed: the first database collects the volcanic eruptive 

scenarios and second one stores data about the plants located in the territory. Furthermore 

the GIS could be used to include other information related to the distribution of urban 

centres, the use of the territory, the electric network, the water supply network, etc. 

In order to identify the impact areas for each eruptive scenario, a threshold value of 

thickness for the ash deposit must be defined. To achieve this scope, data from different 

sources have been taken into account:  

 Day & Fisher [77] discussed that serious problems occur with deposit >10 mm 

(although these are rare events); 

 Blong [78] reported about the eruption of Mt. Spurr in Alaska, where 3 mm of volcanic 

ash ( 5000 g/m2) fell on Anchorage in 1992 and caused many pipe blockages; 
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 in 2002, during the eruption of Mt. Etna (Italy), small amounts of ash caused the 

blockages of the rainwater drainage systems in the city of Catania [79], due mainly to 

the formation of not easily pumped material. 

To make this analysis conservative, in this study, a threshold limit of deposit of 1000 g/m2 

has been considered.  

 

 

Figure 5.3. Scheme of the proposed methodology for the emergency management. 

 

The use of real-time meteorological information (i.e. wind direction and velocity) and the 

characteristics of the eruption (emission rate) allow selecting the scenario. The impact of 

the volcanic ash on the territory is then easily evidenced because a map quickly identifies 

the impact regions and the potential WWTs, which are involved at different time from the 

starting of the eruption. Their identification allows focusing on the mitigation actions for the 

plants.  

The last step of the approach regards the definition of the measures that could be 

implemented to protect some parts of the wastewater treatment. These can be: 

 the timely cleaning of roads; 

 putting in place all protective measures for each equipment (i.e. the coverage of settling 

tanks); 

 the extraordinary maintenance of the WWT. 

The use of the available resources must be rational, especially when this requires the use of 

public funding. 
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Case study 
 

 

 

The approaches and procedure described in the previous Sections were applied to a case-

study, which is the surrounding of Mt. Etna (Sicily – Italy). Etna is a volcano  3300 m high 

and is characterised by both basaltic explosive behaviour and effusive activity. As shown in 

Figure 6.1, it has five craters: North-East Crater (NEC), Voragine (VOR), Bocca Nuova 

(BN), South-East Crater (SEC) and New South-East Crater (NSEC). This last crater 

emerged very recent, i.e. during an eruption occurred in 2014. The surrounding the volcano 

is characterised by the presence of the city of Catania (300 thousand inhabitants), by many 

small urban centres and agricultural and industrial areas. In the Southern area there is one 

of the most complex industrial sites in Europe (Priolo-Augusta-Melilli), which could be 

involved during specific weather conditions. 

Two reasons oriented towards the choice of this case-study [80]: (i) an increased trend to 

give explosive eruptions with ash emission has recently been observed [81]; and (ii) the 

expected damage due to ash fallout is expected to be larger because of the increased 

urbanization and number of industrial infrastructures installed in the recent years. 

In the following, the characterisation of the natural phenomenon (volcanic ash fallout) is 

described; a census of establishments at major risk, power plants and wastewater treatment 

plants is given, followed by the description of the main characteristics of investigated 

equipment in this thesis. Finally, given that the application of most models (see Chapter 4) 

requires the characteristics of volcanic ash, some samples were collected in order to make 

an ash characterisation. 
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Figure 6.1 Location of Mt. Etna (Italy) and main craters 

6.1 Characterisation of the natural phenomenon 

Palumbo [82] analysed the eruptions of Mt. Etna for to the period 1790 – 1993 and showed 

that no eruptions with VEI > 4 occurred. According to this work, the average number of 

eruptions with VEI = 1 over a time interval of 20 years is 3.1, with VEI = 2 it is 4.6 and with 

VEI = 3 it is 1. Branca and Del Carlo [81] showed that from  1950, the volcano has 

changed its eruptive characteristics and more violent explosive eruptions occurred. More 

recent details about the eruptive activity of Mt. Etna are reported by the National Museum of 

Natural History and published in the related web-site [83]. Furthermore, based on the 

current state of knowledge, it is not possible to forecast the characteristics of next eruptive 

events. For this reasons, two representative scenarios for the volcano were considered in 

this study (characterised by different emission rate Qe). As suggested by Scollo et al. [84], 

the representative events (both characterised by VEI = 3) are: 

 Scenario 1: the event occurred during the period 21st – 24th July 2001 (Qe = 5·103 kg/s), 

which represents the most frequent explosive event; 

 Scenario 2: the event occurred during the period 27th October – 30th December 2002 

(Qe = 105 kg/s), which is the worst observed explosive event. 

6.2 Census of the vulnerable elements 

Figure 6.2 and Figure 6.3, respectively, give the census of establishments at major risk and 

power plants and of wastewater treatment plants for the case-study. 
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Figure 6.2. Census of industries at major risk and power plants. 
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Figure 6.3. Census of WasteWater Treatment plants. 
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6.3 Characteristics of floating roof storage tanks 

A model of floating roof was chosen. The roof was assumed a cylinder with radius of 20 m, 

depth 1 m and weight 1.5·105 kg, which may be considered to be a reasonable 

approximation to a double deck floating roof. 

6.4 Characteristics of air intake filters 

To identify the conditions leading to malfunctions of filters through the Ergun equation, the 

density and viscosity of the dusty gas were calculated. Density was determined by using the 

ash particle size distribution [85] and is a function of the ash concentration c. The viscosity 

was estimated through the Einstein correlation, which assumes that the dusty gas is a dilute 

suspension of spheres in the air. Figure 6.4 shows the trend of  (black line) and  (red line) 

with respect to c for both the eruptive scenarios. 

 

 

Figure 6.4. Viscosity (black line) and density (red line) of the dusty gas vs. ash concentration (a) 
scenario 1 and (b) scenario 2. 

Given the presence of pharmaceutical and microelectronic industries in the area 

surrounding Mt. Etna, numerical calculations were made for a filter F7 (according to the 

European classification [86]). The system is at high-efficiency of filtration and/or for fine dust 

and has the following characteristics: 

 flow rate Q = 0.9444 m3/s, 

 filtering surface Af = 6.60 m2. 
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6.5 Characteristics of screens 

The characteristics of the square opening fine screen (Figure 6.5), chosen for this study, are 

given in Table 6.1. 

 

 

Figure 6.5. Square opening fine screen. 

 

Table 6.1. Fine screen characteristics 

Parameter Symbol Unit Value 

Wastewater flow rate Q m3/s 0.8 

Wastewater velocity uf m/s 0.7 

Area of submerged screen A m2 1.14 

Effective open area of submerged 
screen 

As m2 0.285 

Opening size C m 0.5·10-4 

Vertical opening distance U1 m 10-3 

Horizontal opening distance U2 m 10-3 

Bar spacing b1 m 0.5·10-3 

Bar thickness b2 m 0.5·10-3 

 

The first step of the methodology of Section 4.7.1 was the calculation of the Reynolds 

number for the wastewater stream, which flows in the granular bed (ash deposit). Thus the 

characterisation of some ash samples was necessary to obtain the main parameters for the 

particles (dimension, , S, e and k) needed to calculate the Reynolds number of the 

wastewater stream and to make possible the choice of the approach for the computation of 

the thicknesses of the deposit.  

C U2

U1 
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6.6 Characteristics of Grit Removals 

The characteristics of the equipment, chosen for this study, are given in  

Table 6.2. Also in this case, to apply the methodology described in Section 4.7.2, it was 

necessary to know the ash characteristics; thus the characterisation of some ash samples 

was necessary. Then, the K parameter for the wastewater stream was calculated to make 

possible the choice of the approach for the computation of the terminal settling velocities. 

Table 6.2. Horizontal grit removal chamber characteristics [87]. 

Parameter Symbol Unit Value 

Wastewater flow rate Q m3/s 1.215 

Wastewater velocity uf m/s 0.3 

Vessel length Lv m 18.00 

Vessel width Wv m 3.00 

Vessel height Hv m 1.35 

Cross section Agr m2 4.05 

Retention time to s 60 

Critical velocity of settling uo m/s 0.0225 

6.7 Volcanic ash samples collection 

Volcanic ash samples, produced by eruptions of Mt. Etna, were collected at different 

locations (see Figure 6.6): 

 Sample ID=1 – close to Cratere Silvestri (coordinates: lat. 37°41'55.73"N , long. 

15°0'16.94"E; distance 5,5 km); 

 Sample ID=2 – urban area of Messina during the eruption of the 23rdFebruary 2013 

(coordinates: lat. 38°10'16.66"N, Long: 15°31'25.56"E; distance 65 km); 

 Sample ID=3 – Giarre (coordinates: lat. 15°10'9"E, long. 37°44'5"N; distance 15.5 km). 
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Figure 6.6. Locations of the collected ash samples. 
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7  
 
 
 

Ash Characterisation 
 

 

 

Some experimental tests were made to characterise the volcanic ash and obtain size 

distribution, density, specific surface area, voidage and permeability. The results of ash 

characterisation were needed in order to apply the methodologies described above. The 

following experimental tests were performed: 

 Analysis of the size distribution (sieving) 

 Density determination (EN 1097-3 standard) 

 Specific surface area measurement (BET method) and calculations of specific surface 

area and voidage 

 Determination of the permeability (permeameter at constant head) 

7.1 Analysis of the size distribution 

The sieving is the method used to determine the size distribution of the volcanic particles. 

The analysis makes use of special sieves arranged in a column; each of them retains the 

fraction of granules having larger dimensions compared with those of the holes of the sieve. 

The sieves must be stacked in such a way that the top has the larger mesh and the others 

have a gradually smaller mesh going down to the bottom. At the base of the column, there 

is a plate which is used to collect the granules with smaller diameters than the holes of the 

sieve with the lower mesh. The column is placed on a mechanical shaker for 20 min and, 

after the shaking, the solid fractions retained by each sieve is weighted. The weight of each 

solid fraction is then compared to the weight of the total solid to obtain the percentage of 

solid retained by each sieve. In this study a wet sieving has also been used to determine 

the potential of the particles to coalesce due to the weak interaction with water. 
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To determine the size distribution of the dry samples, these have been weighted and dried 

in an oven, then each sample was placed in the top sieve and the column was shaken. The 

wet samples are the result of a mixing process of ash and water and a subsequent filtration. 

The mixing allowed simulating the effect of the rain.  

The results of the size distributions of the ash samples were calculated and presented in a 

logarithmic graph of the retained percentage of solid versus the parameter  (Krumbein 

parameter), which is expressed by the following correlation:  

2
0

log   pd

d
  (39) 

where: dp = diameter of the particle (mm); do = reference diameter, which is equal to 1 mm 

to make the equation dimensionally consistent [88]. 

7.2 Density determination 

The density determination was performed according to the EN 1097-3 standard [89]. The 

density is the loose bulk density (bulk density), which is defined as the mass of the dried 

particles (not compressed). The total volume includes particles volume, inter-particles void 

volume and internal pore volume [90]. According to this definition, the density determination 

was executed by using a container, whose volume and weight are known. It was filled with 

the volcanic ash and, subsequently, weighed. The weight and the volume of the ash 

allowed to determinate the density of samples. 

7.3 Specific surface area and voidage determination 

Several methods were used to estimate specific surface area and voidage: 

 measurements with a Micromeritics ASAP 2020 sorption apparatus; 

 comparison between sample characteristics and literature data; 

 numerical elaborations. 

These allowed achieving different results for the parameters to be estimated. 

Specific surface area measurements were initially executed by using a Micromeritics ASAP 

2020 sorption apparatus. The samples ( 1 mg) were outgased in vacuum at 250°C at least 

16 h. The S values were calculated by applying the BET model (SBET). 

By comparing the geometrical characteristics of collected ash with those of different 

granular beds given by Coulson et al. [62] (Table 7.1), some representative values of e and 

S were assumed (associated with particles having similar dimensions). 
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Table 7.1. Properties of beds of some regular-shaped materials [62]. 

N. Sample 
dp 

(mm) 

S 

(m-1) 
e 

B 

(m2) 

1 Spheres 0.794 7600 0.39 6.2·10-10 

2 “ 1.588 3759 0.41 2.8·10-9 

3 “ 3.175 1895 0.39 9.4·10-9 

4 “ 6.35 948 0.41 4.9·10-8 

5 “ 7.94 756 0.42 9.4·10-8 

6 Cubes 3.175 1860 0.19 4.6·10-10 

7 “ 3.175 1860 0.43 1.5·10-8 

8 “ 6.35 1078 0.32 1.4·10-8 

9 “ 6.35 1078 0.46 6.9·10-8 

10 Hexagonal prisms 4.76 x 4.76 1262 0.36 1.3·10-8 

11 “ 4.76 x 4.76 1262 0.47 5.9·10-8 

12 Triang. pyramids 6.35 x 2.87 2410 0.36 6.0·10-9 

13 “ 6.35 x 2.87 2410 0.52 1.9·10-8 

14 Cylinders 3.175 x 3.175 1840 0.4 1.1·10-8 

15 “ 3.175 x 3.175 1585 0.4 1.2·10-8 

16 “ 6.35 x 6.35 945 0.41 4.6·10-8 

17 Plates  x 0.794 6.35 x 6.35 3033 0.41 5.0·10-9 

18 “ 6.35 x 6.35 1984 0.41 1.1·10-8 

19 Discs 3.175 x 1.59 2540 0.4 6.3·10-9 

20 Porcelain Berl saddles 6 2450 0.69 9.8·10-8 

21 “ 6 2450 0.75 1.73·10-7 

22 “ 6 2450 0.79 2.94·10-7 

23 “ 6 2450 832 3.94·10-7 

23 “ 6 2450 832 3.94·10-7 

24 Lessing rings 6 5950 0.87 1.71·10-7 

25 “ 6 5950 0.89 2.79·10-7 

 

Then numerical elaborations were performed to achieve the specific surface area and 

voidage by means of the Equations (40) and (41) [62], which are based on the assumption 

that the samples are composed of spherical particles (with the same dimensions): 

6

1000


 p

S
d

  (40) 
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 1 loose bulk

solid

e



    (41) 

where: ρloose bulk  = density of not compressed dried particles (kg/m3) and ρsolid = density of 

particles without inter-particles void (kg/m3). 

In Equation (40) the diameter of the particle (dp) is expressed in m, thus the calculated 

specific surface area (S) has the unit m2/g.  

7.4 Determination of the permeability 

Permeability (or hydraulic conductivity, k) refers to the ease with which water can flow 

through a granular solid. It is determined by using the constant head (load) test (according 

to the standard ASTM D 2434 [91]), which is used only for permeable materials (k > 10-4 

cm/s). A homemade permeameter at constant head was made for such experiments (see 

scheme in Figure 7.1). The sample was subjected to a fixed piezometric load (Δh); then, the 

volume of water, passing through it during a certain time (t), was measured. The value of k 

is given by the equation: 

 
 

L V
k

h A t
  (42) 

where: Lpm = length of the porous medium (sample) (m); Apm = cross section of the porous 

medium (sample) (m2); Vwater = volume of water collected during the time t (m3); Δh = 

piezometric load (m). 

 

  

Figure 7.1. Permeameter at constant head. 
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8  
 
 
 

Results and Discussions  
 

 

 

This Chapter is composed of two parts: the first one gives the ash characterisation results 

and the other one illustrates those of the estimation of the equipment vulnerability. 

8.1 Ash characterisation results 

In this Section, the results of the ash characterisation are presented. 

8.1.1 Grain size distributions 

Figure 8.1, Figure 8.2 and Figure 8.3 give the grain size distributions of the volcanic ash 

samples. 

 

Figure 8.1. Size distribution for Sample ID 1.  
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Figure 8.2. Size distribution for Sample ID 2. 

 

 

Figure 8.3. Size distribution for Sample ID 3. 

Due to some technical problems, the aggregation tests of the ash in presence of water was 

not carried out for the Sample ID 3, thus the particle size distribution analysis of the wet 

particles were executed only for samples ID 1 and 2. 

By analysing the results, the prevailing diameters for dry ash particles are: 
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 0.1  1,18 mm ( = 3.3  -0.24) for the Sample ID 1; 

 0.15  1.18 mm ( = 2.7  -0.24) for the Sample ID 2; 

 0.15  2 mm ( = 2.7  -1) for the Sample ID 3. 

After the mixing of ash with distilled water, a certain degree of aggregation is observed as 

indicated by Textor et al. (2006) [34]; the prevailing diameters for the aggregates are: 

 0.6  4.75 mm ( = 0.7  -2.2) for Sample ID 1;  

 2  4.75 mm ( = -1  -2.2) for the Sample ID 2. 

The size distribution analysis gave the data of Table 8.1 

 

Table 8.1. Diameter of particles (dry samples). 

Sample ID 
Weighted Average Diameter

(m) 

Maximum Diameter

(m) 

Minimum Diameter

(m) 

1 4.09·10-4 1.18·10-3 6·10-5 

2 4.78·10-4 1.18·10-3 6·10-5 

3 5.1·10-4 2·10-3 7.5·10-5 

8.1.2 Density 

The weighted ash densities of the samples are given in Table 8.2. It must be pointed that 

Sample ID 2 was collected at about 65 km away from the main crater, thus it is obvious to 

suppose that the light particles were transported at greater distances during the ash cloud 

dispersion. 

Table 8.2. Ash densities. 

Sample ID 
Bulk density Solid density  

 (kg/m3)  (kg/m3) 

1 1470 2830 

2 1070 2100 

3 1550 3050 

8.1.3 Specific surface area and voidage 

The measurements of the specific surface area provided a very low S value, which was 

close to the sensitivity limit of the sorption apparatus. Further investigation would be 

needed. The measured value is higher than that indicated for sands by Jury and Horton 

[92]. By comparing particles having the same size, a comparable S reflects probably a high 

porosity. 
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Previously to the execution of the ash characterisation, by comparing the geometrical 

characteristics (weighted average diameter and shape) with those given in Table 7.1, the 

following preliminary values were assumed: S = 7600 m-1 and e = 0.393. 

Then the specific surface area was calculated using the weighted average diameter of the 

particles, its maximum and minimum values were also determined. Results are given in 

Table 8.3. 

Table 8.3. Specific surface area. 

Sample ID 

Specific surface area (m2/g) 

BET method 
dp = weighted 

average diameter 
dp = maximum 

diameter 
dp = minimum 

diameter 

SBET Sav Smin Smax 

1 -- 9.97·10-3 3.46·10-3 6.80·10-2 

2 -- 1.17·10-2 4.75·10-3 9.35·10-2 

3 -- 7.58·10-3 1.94·10-3 5.16·10-2 

 

The weighted specific surface area was elaborated by using the values of S of each grain 

class of ash (calculated by Equation (40)). Finally the weighted voidage was also 

determined by using both loose bulk and solid densities of each grain class and Equation 

(41). Results are given in Table 8.4; Figure 8.4 and Figure 8.5, respectively, show the 

specific surface area and the voidage with respect to the class of particles’ size. Results for 

Sample ID 2 are not available given that its quantity was not enough to make further 

analysis. 

Table 8.4. Weighted values for S and e for Sample ID 1 and 3. 

Sample ID 
Specific surface area  Voidage 

(dimensionless) (m-1) (m2/g) 

1  22,500 15.19 0.48 

3  15,000 9.75 0.49 
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Figure 8.4. Specific surface area with respect to the class of particles’ size. 

 

 

Figure 8.5. Voidage with respect to the class of particles’ size. 
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Thus, the calculation of S was made by assuming a smooth and spherical shape and the 

same dimension for the particles. It was carried out assuming that the diameter of the 

spheres is equal to the weighted average diameter and, subsequently, equal to the 

maximum and minimum diameter of the particles (Table 8.3). It was found that S clearly 

increases as d decreases and, by assuming a constant diameter (as in the case of the 

maximum diameter, which is the same for Samples ID 1 and 2), S is greater for the sample 

having a lower density (Sample ID 2), reflecting a higher porosity. Further confirms can 

been found in the last case, where, by comparing the Samples ID 1 and 3, S resulted 

greater for Sample ID 3 only for particles with d < 0.2 mm (in this case Sample ID 3 has the 

lowest density, this reflects a higher porosity); whereas when d > 0.2 mm, S is almost the 

same for Samples 1 and 2 (S1 is slightly higher than S3, meaning that the porosity is 

comparable for both samples). 

Concerning data of the voidage of the Sample ID 1, it ranges between 0.46 and 0.49 

(Figure 8.5), with a prevailing contribution of the particles’ class having 0.15 < d < 0.2 mm; 

while the Sample ID 3 shows a greater voidage variability than the Sample ID 1, in this case 

e is higher ( 0.56) for the classes having 0.1 < d < 0.15 mm and 0.15 < d < 0.2 mm, but the 

prevailing contribution to the weighted voidage is given by the classes 0.3 < d <0.6 mm and 

0.6 < d < 1.18 mm. The voidage for Sample ID 2 is not available for the reason mentioned 

above. 

8.1.4 Permeability 

The measurements, executed with the permeameter at constant head, allowed the 

calculation of k. The permeability is close to 2.5·10-5 m/s; it can be stated that the ash 

samples from Etna has an average permeability according to the International classification 

of soils (because k is comprised in the range 10-3÷10-5 m/s). 

8.2 Threshold limit for atmospheric fixed roof storage tanks 

The threshold limits of ash load on fixed roof tanks were calculated using the analogy with 

the snow load. The threshold limits S1, S2 and S3 are, respectively, the load causing light 

damage, structural damage and the collapse of the fixed roof. The ash loads are given in 

Table 8.5. 
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Table 8.5. Threshold limits for damage to a fixed roof tank 

 
Light damage 

(S1) 

Structural damage 

(S2) 

Structure collapse 

(S3) 

Load (kg/m2) 122 357 714 

8.3 Threshold limit for floating roof storage tanks 

To apply the approach described in Section 4.5.2, Equation (10) was firstly applied to two 

laboratory floating beakers in water (as described in [58]), which were used to simulate by 

extrapolation the behaviour of floating roofs. Their characteristics and those of the floating 

roof are given in Table 8.6, where the results of the calculation of their flotation stability are 

also shown. 

Table 8.6. Characteristics and floatation stability for the immersion in water of two laboratory beakers 

and the model floating roof. 

Parameters Beaker A Beaker B Parameters Floating roof 

R (cm) 4.708 3.436 R (m) 20 

δ (cm) 5.490 9.642 δ (m) 1 

Mbeaker (g) 92.27 96.01 Mroof/105 (kg) 1.5 

zB (cm) 1.963 4.135 zB (m) 0.5 

ρliquid/103 (kg·m-3) 1.0 1.0 ρliquid/103 (kg·m-3) 1.0 0.8 

δimm (cm) 1.325 2.589 δimm (m) 0.119 0.149 

zM (cm) 4.843 2.434 zM (m) 837.58 670.32 

(zM-zB) (cm) 2.880 -1.701 (zM-zB) (m) 837.08 669.82 

 

Figure 8.6 shows the variation of the height of the ash deposit with respect to the immersion 

depth for different liquid and ash densities. The right ordinate shows the ratio of the weight 

of ash to the weight of the roof. It can be seen that, in order to sink the roof, the weight of 

the ash deposit must be several times larger than the weight of the roof [93]. 

Generic values of ash density were considered to represent dry particles (1000 kg/m3) and 

wet particles (2000 kg/m3) of ash, whereas two liquid densities were assumed (respectively 

800 and 1000 kg/m3) to include all liquid fuels. 
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Figure 8.6. Variation of the height of the ash deposit with respect to the immersion depth for different 
liquid and ash densities. Depth of the ash deposit to sink the floating roof for liq = 1,000 kg m-3: (a) 
ash = 1,000 kg m-3 (c) ash = 2,000 kg m-3 and liq = 800 kg m-3: (b) ash = 1,000 kg m-3 (d) ash = 2,000 
kg m-3. The right ordinate shows the ratio Mash/Mroof for (e) liq = 1,000 kg m-3 and (f) liq = 800 kg m-3 

[93].  

The potential failures are the sinking and the capsizing of the roof, related threshold limits 

are indicated as T1, T2 and T3 [94]. T1 is the ash load which causes a partial immersion of 

the roof leading to the release of a liquid quantity equal to ¼ the volume of the roof (Figure 

8.7(a)). T2 is the ash load, which sinks the roof (full immersion); this failure is an extreme 

damage (due to the great ash amount required to sink it) and causes the release of a liquid 

volume equal to that of the roof plus the ash deposit (Figure 8.7(b)). To capsize the roof the 

deposit must become asymmetric, assuming an initial symmetric ash distribution, the 

asymmetry is caused by local wind. The threshold value for the roof capsizing (T3) is the 

mass of ash that, assuming a specific asymmetric distribution, leads to an asymmetrical 

immersion of the roof as shown in Figure 8.7(c). It is obvious that once T3 is known, related 

to this particular asymmetrical deposition, the probability of capsizing is conditioned by the 

occurrence of certain weather conditions. Also this mode failure is an extreme damage. 

Table 8.7 gives the threshold limits for sinking and capsizing for the model double deck 

floating roof. 
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Figure 8.7. Potential failure modes for floating roof tanks: (a) partial immersion of the roof leading to a 
release of a liquid quantity equal to one-fourth of the volume of the roof, (b) roof sinking and (c) roof 

capsizing. 

Table 8.7. Threshold limits for sinking and capsizing for the model double deck floating roof. 

 
Partial immersion of the 

roof (T1) 
Roof Sinking 

(T2) 

Roof capsizing 

 (T3) 

Load (kg/m2) 170* 680 135** 

*causing the release of an amount of liquid equal to ¼ the roof volume 

**with an ash distribution causing an asymmetrical immersion of the roof equal to ½ its height 
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8.4 Threshold limits for air intake filters 

The threshold limits of volcanic ash deposit on the filtering surface are indicated M1 and M2 

[94]. M2 is calculated by the manufacturer using the critical value of pressure drop and 

represents the mass of deposit causing the rupture; whereas M1 was assumed as a 

threshold for partial damage and is defined as the mass accumulated on the surface equal 

to ½ the amount of ash causing the filter rupture (partial clogging). For the filter typology 

considered in this study, the numerical values are: 

 M1 = 250 g 

 M2 = 450 g 

8.5 Exceedance probability curves and vulnerabilities 

After the estimation of the threshold value of the physical parameter, the exceedance 

probability must be determined, which is given by the probability that, given the occurrence 

of an explosive eruption having a certain magnitude, the physical parameter will exceed the 

threshold limit. This probability is the equipment vulnerability to the ash fallout with respect 

to a given damage mode. Figure 8.8 and Figure 8.9 show the probability of exceedance 

curves of the physical parameters (ground ash load and concentration in the atmosphere) 

for a location of the case-study. In both the figures, the dashed line refers to the most 

frequent scenario and the solid one to the worst-case scenario. 
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Figure 8.8. Exceedance probability as a function of ash load. 

 

Figure 8.9. Exceedance probability and the time of clogging as a function of ash concentration. 
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At a given location, the vulnerability for storage tanks can be obtained from Figure 8.8. 

Through the use of the threshold values defined above, the exceedance probabilities can be 

directly read on the graph (the lines S1, S2, S3 refer to fixed roof tanks, whereas T1, T2, T3 

to floating roof tanks). 

In order to determine the probability of occurrence of the conditions leading to the partial 

clogging or the rupture of the filter, the exceedance curve of ash concentrations was 

overlapped to the line giving the trend of the time of clogging. Thus the graph of Figure 8.9 

associates each concentration with both the exceedance probability and the time necessary 

to clog the filter. In this case, the failure probability has to be conditioned by the occurrence 

of an event with certain duration. The values M1 and M2 derive from different combinations 

of t and c, this means that, once the concentration is known, the probability of exceedance 

can be read on the left ordinate and is associated with a specific time, respectively, of 

clogging or blockage (right ordinate). As an example, given the occurrence of a volcanic ash 

emission and assuming a concentration of 200 µg/m3 in the location related to Figure 8.9, 

the time for the clogging of the filter is about 5 days and for the blockage is equal to 10 

days. Using the same graph the exceedance probability of the concentration of 200 µg/m3 

can be achieved, it results about 7 % for most frequent scenario and 1 % for the worst-case. 

8.6 Vulnerability maps 

By using the ModelBuilder, the vulnerability maps are provided through the geo-processing 

model of Figure 5.2, it runs in a semi-automatic mode. It is necessary to know the 

exceedance probabilities related to some locations in the area. In the flow chart of Figure 

5.2, the inputs are geospatial data (locations) related to the sample points and the 

exceedance probabilities; the first operation gives the correlation between the inputs, then a 

spatial interpolation approach is automatically run and, finally, maps will be produced. The 

last operation, “delete field”, restores the input files, this permits an easy management of 

the dataset. 

In this work, the spatial distribution of points of Figure 8.10 was used as a base for the 

interopolation. Then by means of the semi-automatic procedure the vulnerability maps for 

the case-study have been obtained (Figure 8.11, Figure 8.12, Figure 8.13, Figure 8.14). 

Each map represents a iso-probability curve on cartography: Figure 8.11 and, Figure 8.12 

refer to light damage of fixed roof tanks, whereas Figure 8.13 and Figure 8.14 show 

probabilities of exceedance of threshold limit for filters’ partial clogging. 
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Figure 8.10. Spatial distribution of points. 

 

Figure 8.11 and Figure 8.13 were produced by using the IDW method and Figure 8.12, 

Figure 8.14 show the results obtained by the Kriging interpolation procedure. A legend of 

colours has been defined: each colour is associated with a class of exceedance 

probabilities. Ten classes have been defined, each of them has amplitude of 10%; the 

darkest colour represents the highest probability class (ranging 91÷100 %). 

 

 

 



Chapter 8. Results and Discussions 

 

 
71 

 

 

Figure 8.11. Vulnerability map for light damage of fixed roof tanks (Inverse Distance Weighting approach). 
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Figure 8.12. Vulnerability map for light damage of fixed roof tanks (Kriging approach). 



Chapter 8. Results and Discussions 

 

 
73 

 

 

Figure 8.13. Vulnerability map for filters’ partial clogging (Inverse Distance Weighting approach). 
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Figure 8.14. Vulnerability map for filters’ partial clogging (Kriging approach). 
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The IDW allows a quick calculation, but the geostatistical approach gives a more accurate 

estimation even if the data-processing is time-consuming. After the interpolation, each 

prediction needs to be validated. The validation procedure used in this work is the cross-

validation, it consists in plotting the predicted value as a function of the measured value in a 

Cartesian graph. The results of the validation are shown in Figure 8.15 (a,b) and Figure 

8.16 (a,b). It can be observed that the predictions of Figure 8.15 (b) and Figure 8.16 (b) give 

a slope close to 1 demonstrating a good applicability of the Kriging method. 

 

 

Figure 8.15. Validation of predictions for vulnerability maps related to light damage of fixed roof 
tanks: (a) IDW method and (b) Kriging method. 

 

 

Figure 8.16. Validation of predictions for vulnerability maps related to partial clogging of filters: (a) 
IDW method and (b) Kriging method. 
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The cross-validation allows determining “how good” the model is, but to be applicable, the 

method must have a Mean Error (the average difference between the measured and the 

predicted values) close to 0. 

In order to determine the applicability of the models, the spatial distribution of errors was 

studied in relationship to the measured values (20 samples). The error plots of Figure 8.17 

(a,b) and Figure 8.18 (a,b) give both the error value per measure (measured value 

subtracted from the predicted value, indicated by each point) and the Mean Error (indicated 

by the fitting line) vs. the measured values. Figure 8.17 refers to fixed roof tanks, whereas 

Figure 8.18 is for filter. The trend of the Mean Error is slightly decreasing and close to 0 by 

using the Kriging, whereas a more decreasing trend is observed for the IDW. According to 

the error estimation, within the interpolation methods used, the Kriging method is the one 

that best estimated the vulnerability. Anyway a limit to the application of the approach could 

be related to the limited number of sample points. 

 

 

Figure 8.17. Error estimation for predictions related to light damage of fixed roof tanks: (a) IDW 
method and (b) Kriging method.  
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Figure 8.18. Error estimation for predictions related to partial clogging of filters: (a) IDW method and 
(b) Kriging method. 

8.7 Screening clogging: conditions 

The Reynolds number was calculated for the wastewater flow inside the pore channels 

using the weighted values of S and e given in Table 8.8. Results are shown in the same 

table with the indication of the resulting flow regime. The flow is never streamline; this 

means that the thickness of the deposits must be quantified with the Carman equation. 

 

Table 8.8. Reynolds numbers and regime flow (using weighted S and e). 

Sample ID 
ul 

(m/s) 

Sw  

(m2/g) 

ew 

(dimensionless) 

Re 

(dimensionless) 
Regime 

1 
1.79 

15.19 0.48 91.89 Transition 

3 9.75 0.49 117.52 Transition 

 

To take into account the variability of the dimension of volcanic ash particles and the 

voidage, several calculations were made by referring to data of Table 8.9 and Table 8.10. 
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Table 8.9. Reynolds numbers and regime flow (using average, minimum and maximum S). 

Sample ID 
ul 

(m/s) 

S 

(m-1) 

e 

(dimensionless)

Re 

(dimensionless) 
Regime 

1 1.79 

Savarage 

0.392 

78.57 Transition 

Smin 226.43 Transition 

Smax 11.51 Transition 

2 1.79 

Savarage 91.75 Transition 

Smin 226.43 Transition 

Smax 11.51 Transition 

3 1.79 

Savarage 97.94 Transition 

Smin 383.77 Transition 

Smax 14.39 Transition 

 

Table 8.10. Reynolds numbers and regime flow (using literature data for e). 

Sample 
ul 

(m/s) 

S 

(m-1) 

e 

(dimensionless) 

Re 

(dimensionless) 
Regime 

Case 1 

1.79 7600 

0.393 151.7 Transition 

Case 2 0.4 153.5 Transition 

Case 3 0.5 184.2 Transition 

Case 4 0.6 230.3 Transition 

Case 5 0.7 307 Transition 

Case 6 0.8 460.5 Transition 

Case 7 0.9 921 Transition 

 

8.7.1 Critical ash deposit on fine screens 

Malfunctions and efficiency reductions of screens are defined by means of the pressure 

drop (ΔP). ΔP was calculated using Equation (16), by choosing a proper Cdisch value. It is 

worth noting that the extreme event, which is the total screen clogging, was not considered 

in this work, since cleaning operations were assumed to be executed before the occurrence 

of a total blockage. The resulting pressure drops are: 

 ΔPo ~ 6570 Pa (initial screen’s pressure drop) 

 ΔP1 ~ 9850 Pa (dirty screen) 

 ΔP2 = 15760 Pa (very dirty screen) 

The trend of the head loss in screen (Δh = ΔP/(g·)) versus the stream velocity is shown in 

Figure 8.19.  
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Figure 8.19. Head losses for fine screens vs. stream velocity. 

Then, by using the Carman equation (22), the thicknesses of the ash deposit on the screen 

were calculated using data of Table 8.8. Results are given in Table 8.11 where l1 and l2 are 

respectively the thicknesses of the ash deposit causing a pressure drop equal to ΔP1 and 

ΔP2. Figure 8.20 shows the critical thickness (l1 and l2) as a function of d, it can be 

evidenced that a very small quantity of ash is enough to clog this type of screen. 

 

Table 8.11. Weighted average critical thicknesses of ash deposit (using weighted S and e). 

Sample ID 
Re 

(dimensionless)

l1 

(mm) 

l2 

(mm]) 

1 91.89 0.98 1.57 

3 117.52 1.45 2.31 
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Figure 8.20. Critical thicknesses of ash deposit with respect to the particles’ diameter for (using 
weighted S and e). 

Results obtained by using data of Table 8.9 and Table 8.10 are given in Table 8.12 and 

Table 8.13. 

 

Table 8.12. Thickness of ash deposit (using average, minimum and maximum S). 

Sample ID 
S 

(m-1) 

Re 

(dimensionless)

l1 

(mm) 

l2 

(mm) 

1 

Sav 78.57 0.42 0.67 

Smin 226.43 1.54 2.46 

Smax 11.51 0.03 0.04 

2 

Sav 91.75 0.51 0.82 

Smin 226.43 1.54 2.46 

Smax 11.51 0.03 0.04 

3 

Sav 97.94 0.56 0.89 

Smin 383.77 2.84 4.55 

Smax 14.39 0.04 0.06 
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Table 8.13. Thickness of ash deposit (using literature data for e). 

Sample 
Re 

(dimensionless) 

l1 

(mm) 

l2 

(mm) 

Case 1 151.7 0.3 0.8 

Case 2 153.5 0.3 0.8 

Case 3 184.2 0.7 2 

Case 4 230.3 1.7 4.5 

Case 5 307 3.7 10 

Case 6 460.5 8.9 23.7 

Case 7 921.1 27.8 74 

8.7.2 Discussion 

At a glance, the deposit thicknesses causing the critical pressure drops are very small, in 

some cases these do not reach the value of 1 mm. This observation allows stating that the 

presence of few quantities of volcanic ash, with the characteristics similar to those emitted 

by Mt. Etna, causes instantly the system clogging. It should be underlined that, in this 

Section, the study has been focused on fine screens because the size distribution analysis 

showed that these are the equipment typology able to retain such particles, even if fine 

screens are not always installed in wastewater treatments. If such screens are not included 

within the plant, the particles’ removal is provided by grit chambers, these are also affected 

by the presence of ash [95].  

Results showed that the increase of the voidage for the granular bed determines an 

increase of the deposit thickness (Table 8.13). By applying the approaches for the 

calculation of the critical thicknesses, it was observed that the flow had always a transition 

regime; the increase of S (related to the decrease of the diameter of the particles) causes 

the decrease of the Reynolds number up to bring the flow close to the laminar regime. It 

must be recalled that S rises also as the porosity increases. Consequently, the critical 

thickness increases with the decrease of S and, thus, with the increase of d.  

8.8 Incomplete grit removal 

To calculate the terminal settling velocities of the ash particles, the assumptions discussed 

in Section 4.7.2 were necessary and justified as follows:  

(1) given that the sewage is a dilute suspension, the free settling condition occurs in the 

chamber;  
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(2) the effect of the walls of the vessel is negligible as this an industrial-scale 

equipment;  

(3) the particle shape is greatly variable to account for the infinite shapes, thus they 

need to be assumed spherical. 

By applying the K parameter criterion, described above, the proper correlation for ut,p was 

chosen. Then the terminal settling velocity was calculated for each representative diameter 

of the particle size classes, identified by sieving, and for all the samples (Table 8.14, Table 

8.15 and Table 8.16). 

 

Table 8.14. Terminal settling velocity for the Sample ID 1 of volcanic ash. 

dp·10
‐3  

(m) 
1.18 0.6 0.3 0.2 0.15 0.1 0.08 0.06 

K 30.90 15.71 7.86 5.24 3.93 2.62 1.96 1.57 

ut,p·10
‐2  

(m/s) 
23.13 14.08 6.59 3.53 2.12 1.00 0.56 0.36 

u’t,p·10
‐2 

(m/s) 
37.88 33.14 30.71 30.21 30.07 30.02 30.01 30.00 

 

Table 8.15. Terminal settling velocity for the Sample ID 2 of volcanic ash. 

dp·10-3  
(m) 

1.18 0.6 0.3 0.2 0.15 0.1 0.08 0.06 

K 26.08 13.26 6.63 4.42 3.31 2.21 1.66 1.33 

ut,p·10
‐2  

(m/s) 
17.47 10.18 4.35 2.22 1.30 0.60 0.34 0.22 

u’t,p·10
‐2 

(m/s) 
34.71 31.68 30.31 30.08 30.03 30.01 30.00 30.00 

 

Table 8.16. Terminal settling velocity for the Sample ID 3 of volcanic ash 

dp∙10-3  
(m) 

2 1.18 0.6 0.3 0.2 0.15 0.1 0.08 

K  54.39 16.32 8.16 5.44 4.08 2.72 2.04 1.63 

ut,p·10
‐2 

(m/s) 
33.57 15.11 7.20 3.91 2.36 1.10 0.63 0.40 

u’t,p·10
‐2 

(m/s) 
45.03 33.59 30.85 30.25 30.09 30.02 30.01 30.00 

 

Figure 8.21 shows the trend of the settling velocity (left hand axis) as a function of particle 

diameter. In the right axis the K value is shown (in logarithmic scale) and allows identifying 

the regime flow. 
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Figure 8.21 Terminal settling velocity of volcanic ash particles versus particles’ diameter. 

 

8.8.1 Fraction of settled particles 

The weight fraction of each sample remaining to each sieve (Xw) was plotted against the 

terminal settling velocity as shown in Figure 8.22. Then, using the results of the analysis of 

the particle size distribution, the weight fraction having a velocity of settling less than ut,p, 

which is the fraction passing each sieve (X), was calculated. Figure 8.23, Figure 8.24 and 

Figure 8.25 give the curves representing the weight fraction versus the terminal settling 

velocity, respectively, for Sample ID 1, 2 and 3; uo is indicated in each figure.  
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Figure 8.22. Weight fraction remaining at each sieve versus terminal settling velocity of particles. 

 

Figure 8.23 Fraction of ash with settling velocity less than ut,p versus settling velocity (Sample ID 1).  
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Figure 8.24. Fraction of ash with settling velocity less than ut,p versus settling velocity (Sample ID 2). 

 

Figure 8.25. Fraction of ash with settling velocity less than ut,p versus settling velocity (Sample ID 3). 

After derivation of the equation of the curves of Figure 8.23, Figure 8.24 and Figure 8.25, by 

means of a regression procedure, the total fraction of removed particles was calculated for 

each sample by using equation (36). The unsettled fraction is given by the area on the left 
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side of the curve, comprised between the x axis and the line passing through Xo divided by 

uo. The results of the total fraction of removed particles are given in Table 8.17. 

 

Table 8.17. Fraction of removed particles. 

Sample ID Xo 1 – Xo 
,

oX
t p

oo

u
dX

u   Xr,total 

1 0.125 0.875 0.089 0.914 

2 0.011 0.989 negligible ~ 0.999 

3 0.012 0.988 negligible ~ 0.988 

8.8.2 Discussion 

It was observed that the K parameter is always smaller than 68.9. The particle sizes do not 

allow the achievement of the values required to apply the Newton's law (68.9 < K < 2,360) 

or the correlation associated with the region d (K > 2,360). As shown in Section 4.7.2, the 

density values influence the terminal settling velocity. By comparing particles with the same 

diameter, Sample ID 1 has a greater sedimentation velocity than Samples ID 2 and 3. 

Figure 8.22 gives an instant view of the weighted fraction of particles for each value of 

terminal settling velocity. The results of the size distribution analysis allowed drawing the 

curves of the fraction of particles having less than a stated velocity ut,p for each samples. 

Then, by computing the critical velocity uo for particles in the grit chamber, the fraction of 

removed particles was quantified. Results showed that ~ 94 % of particles of Sample ID 1 

are removed; particles of Samples ID 2 and 3 can be considered totally removed. 

Additional considerations can be made on the choice of the equipment design parameters 

or the formulation of potential alternatives to horizontal grit chambers. Given that 

wastewater plants are designed to remove about the 95 % of particles with a diameter of 

0.21 mm, it can be observed that: in the case of Sample 1 the ut,p is 3.3·10-2 m/s for particles 

with dp = 0.2 mm, this means that there is a no-negligible fraction of particles having ut,p < uo; 

in the case of Samples ID 2 and 3, the ut,p of particles of the same diameter is  2.03·10-2 

m/s that is greater than uo. The critical settling velocity can be increased only by raising the 

depth of the chamber, since a reduction of to bring out from the range of the design values 

for uf and Lv. Thus, in this frame the only possible alternative is the use of vortex-type grit 

chambers, as they remove particles up to 0.11 mm with a retention time of 30 s [61], but 

unfortunately their use increase costs; aerated grit chambers are not recommended 

because they eliminate particle up to 0.20 mm and hence, on the basis of the results of this 
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study, they do not introduce any significant improvement in the removal process compared 

to a horizontal grit chamber. 
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9  
 
 
 

Conclusions 
 

 

 

The analysis of the state of the art related to the approaches to industrial risk assessment 

coupled with catastrophic natural phenomena shows that few methodologies assessing Na-

Tech risks exist. Given that (1) Na-Techs are increasing and (2) Na-Techs often cause 

releases of great amount of hazardous substances, it is strongly recommended the analysis 

of potential industrial accidents triggered by natural phenomena and the 

development/consolidation of tools to achieve this aim. In this context the main efforts have 

to be dedicated to the implementation of the Quantitative Risk Analysis (QRA) through 

different levels of complexity; then in carrying out Na-Tech risk assessment, the level of the 

analysis to be used depends on the scope of the study [96]. The basis for the integration of 

Na-Techs in QRA regards the development of specific models for the estimation of the 

equipment vulnerability under the impact of natural phenomena. To this scope, in this 

thesis, two types of equipment were studied: atmospheric storage tanks and air intake 

filters. Some conclusive considerations can be given: 

 

1. The behaviour of floating roof storage tanks under the impact of volcanic ash load 

was studied. On the basis of some physical concepts, the ash load of 680 kg/m2 

sinks the roof of the model double deck floating roof tank (containing a liquid having 

a density of 1000 kg/m-3). The height of the deposit to sink the roof decreases as the 

liquid density decreases and the ash density increases. To study the capsizing of 

roofs the theories of stability of floating bodies and the concept of metacentre have 

been applied. A metacentre height equal to  840 m has been calculated, for a liquid 

density of 1000 kg/m-3, and to 670 m, for a liquid density 800 kg/m-3. These heights 

reflect a great stability of floating roofs. Their stability was verified also through the 
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application of the Euler method to calculate the minimum load to be applied for 

capsizing the roof; this load is greater than the weight of the roof. 

The analysis of the case-study (the surrounding Mt. Etna) showed that combining 

the probability of exceedance and the threshold value for fixed roof and floating roof 

tanks it is possible to create a simple description of the vulnerability of equipment. It 

was found that the probability of damage is no-significant for an event having the 

magnitude of scenario 1 and is slightly greater for scenario 2. These results may be 

useful for planning land-use close to the volcano and for implementing maintenance 

procedures for existing facilities. 

2. A procedure for the estimation of threshold values of physical parameters causing 

damage on filtration systems due to ash emissions was defined. In this case the 

exceedance probability of concentration must be associated with both the 

concentration and the time necessary to clog the filter. This means that the failure 

probability has to be conditioned by the occurrence of an event with certain duration. 

The method also is applicable to other filtration systems such as that of systems of 

air conditioning and in the filtering of operating rooms. 

 

Another objective of this study was to provide local authorities and planners with useful 

procedure and tools for planning emergencies connected to volcanic Na-Tech risks. In this 

context, the development of vulnerability models, interfaced with a Geographic Information 

System (GIS) software, makes more efficient the management of data for the risk 

calculation and also more effective the planning and management of emergencies. It was 

seen that the greatest concern of Na-Techs is related to the potential overloading of the 

emergency response system and its ability to minimise losses to persons and property. 

More specifically, technological accidents may be triggered by natural events and their 

effects may add to or worsen the condition of people and environment struggling with the 

effects of the natural event. Safety and rescue operations may be impeded by the shortage 

of resources (water, energy, etc.) or by the reduction of accessibility due to debris and the 

fleeing population. In this context, the interactive GIS interface of the vulnerability maps 

helps to identify available refuges, escape paths, etc.  

 

In this thesis, Na-Techs in wastewater treatments were also investigated, focusing mainly 

on primary treatments (screening processes and grit removals). The conditions leading to 

malfunctions of screens, with respect to the phenomenon of volcanic ash emission, were 

determined. The estimation of the threshold amounts of ash causing the reduction of 
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functionality of fine screens was made for the case-study by using literature data and 

experimental results from the ash characterisation. The study was based on two 

assumptions: (i) the sewage characteristics were assumed to be equal to those of water, 

and (ii) the particles were assumed having a smooth and spherical shape. Then the 

conditions leading to malfunctions of grit removal facilities, with the respect to the 

phenomenon of volcanic ash emission, were also determined. The work was mainly 

addressed to the investigation of horizontal grit chambers. Also in this case, some 

assumptions were necessary for the application of the methodology discussed in Section 

5.2.2.  

All these assumptions were proper discussed and justified. Even if they were necessary to 

simplify the application of the proposed approaches, the results gave a valid support in 

addressing alternative solutions for the ash removal (such as the use of a vortex-type grit 

chamber) and more efficient management planning (frequent cleaning operations in 

screens). 

9.1 Potential future developments 

The study of volcanic Na-Tech risks, which are currently considered emerging risks, and of 

the vulnerability of territory and people allow understanding that the knowledge about 

natural-technological scenarios is still beginning. Many gaps can be found in the current 

knowledge, which must be remedied. In this frame this thesis represents a starting point to 

approach to the investigation of the vulnerability of equipment to natural phenomena, in 

particular concerning to volcanic Na-Techs.  

Future developments could be the development of further methodologies for the 

assessment of the vulnerability of other equipment types. This is important to build a strong 

base to achieve the prevention of Na-Tech accidents and also for a more efficiency 

management of the territory, human health and environment issues.  

Concerning the case-study, a probabilistic investigation to understand the possible trend of 

explosive eruptions of Mt. Etna must be executed. This will allow providing a consolidated 

probabilistic base to the study (in particular for to broad the standard QRA), which is 

strongly affected by several uncertainties. 
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ANNEX 4 
SYMBOLS 

Symbol Parameter 

AD projected area of the particle in the flow direction 

Af area of submerged screen 

Agr cross section of the horizontal grit chamber 

Am average filter Arrestance  

Apm cross section of the porous medium 

As  effective open area of submerged screen  

Atot cross-sectional area 

B centre of buoyancy  

b1 Bar spacing for the fine screen 

b2 Bar thickness for the fine screen 

c ash concentrations  

C opening size for the fine screen 

CD drag coefficient 

Cdisch coefficient of discharge for the fine screen  

Cp concentration of particle 

d reference particle's diameter (size) for the grain class 

Deq equivalent diameter of the pore space  

df  average equivalent diameter of the filter  

di  distance between the i-th point and So 

do reference diameter for the particle 

dp  particle's diameter 

e  voidage or porosity 

Em average filter Efficiency  

ew weighted average voidage 

  Krumbein parameter 

G centre of gravity  

g gravity acceleration  

g gravitational constant  

GIS Geographic Information System 

Go  specific mass flow rate of the dusty gas 

h height of ash deposit 

Hv vessel height 

I  moment of inertia of the body  
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k constant for the permability 

K parameter for the identification of the flow regime of a particle settling in a liquid 

ki intrinsic permeability 

L lenght of the filtering surface 

l thickness of the porous medium  

l1 thickness of the ash deposit causing a pressure drop equal to ΔP1 

l2 thickness of the ash deposit causing a pressure drop equal to ΔP2 

Lpm length of the porous medium 

Lv vessel length 

M metacentre 

M1 threshold limit of ash deposit causing a partial clogging of the filter 

M2 threshold limit of ash deposit causing the rupture of the filter 

Mash ash mass 

mash  mass of ash deposit on the filter surface 

Mbeaker beaker mass 

MPPS  Most Penetrating Particle Size 

Mroof  floating roof tank mass 

n empirical exponent dependent on Re 

N number of locations used for the estimation  

p(y) probability distribution of y 

p(y|x) probability of occurence of y conditioned by the occurence of x 

PL final pressure drop on the filtering surface 

Po  initial pressure drop on the filtering surface 

Q volumetric flow rate 

Qe volcanic emission flow rate 

QRA Quantitative Risk Analysis 

R radius of the floating roof tank  

R’  
component of the drag force per unit area of particle surface in the direction of 
motion 

Re Reynolds number  

S specific surface area 

S  filtering surface  

S1 specific surface area for Sample ID 1 

S1 load threshold limit for light damage of the fixed roof 

S2 specific surface area for Sample ID 2 

S2 load threshold limit for structural damage of the fixed roof 

S3 specific surface area for Sample ID 3 

S3 load threshold limit for the collapse of the fixed roof 

Sav avarage specific surface area (calculated using the weighted average diameter) 
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SBET specific surface area measured with the BET method  

Smax maximum specific surface area (calculated using the minimum diameter) 

Smin minimum specific surface area (calculated using the maximum diameter) 

So predicition point 

Sw  weighted average specific surface area 

t time 

T1 load threshold limit for the partial immersion of a floating roof 

T2 load threshold limit for thefloating roof sinking  

T3 load threshold limit for the floating roof capsizing 

to retention time in vessel 

u average velocity 

U1 vertical opening distance for the fine screen 

U2 horizontal opening distance for the fine screen 

uf sewage velocity  

ul  average velocity through the pore channels  

uo critical settling velocity 

us the settling velocity  

ut terminal settling velocity  

u't,p final settling velocity of the particle  

ut,p  terminal settling velocity of a particle with a diameter dp  

ut,p|Cp terminal settling velocity in hindered condition 

V vessel's volume 

Vdisp volume of displaced liquid  

VEI Volcanic Explositivity Index 

Vimm immersed volume 

vo velocity of the dusty-gas at the inlet 

Vp effective volume of the particle 

Vwater volume of water collected during the time t  

wi weight coefficient for the measured value at the i-th location  

Wv vessel width 

WWT Waste Water Treatment 

x indipendent variable 

X fraction of particles with less than the stated velocity 

Xo fraction particles with ut,p ≤ uo 

Xr 
fraction removed of particles with a terminal settling velocity less than uo or 
equal  to uo 

Xr,total total fraction of removed particles 

Xw weight fraction of ash sample remaining to a sieve  

y dipendent variable 
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Y notation for the probability 

z(Si)  measured value of the variable at the i-th location 

z(So)  value to be predicted associated with the location So 

zB height of the buoyancy centre  

zM metacentre height  

δ depth of the floating roof tank  

Δh head load  

δimm  depth of immersion 

ΔP pressure drop 

ΔP1 pressure drop for the dirty screen 

ΔP2  pressure drop for the very dirty screen 

ΔPo  initial screen’s pressure drop 

δroof  immersion depth of the floating roof tank in the absence of ash 

ε filter void fraction  

λi  weight assigned to each measured value at the i-th location 

μ  viscosity 

π  pi greco constant 

ρ  density  

ρash  ash density 

ρliquid  liquid density 

ρloose bulk density of not compressed dried particles 

ρs  particle density  

ρsolid density of particles without inter-particles void 

 


