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4 DESCRIPTION OF ADOPTED CODES 
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4.1 RELAP5/ MOD 3.3 CODE 

The light water reactor (LWR) transient analysis code, RELAP5, was 

developed at the Idaho National Engineering Laboratory (INEL) for the U.S. 

Nuclear Regulatory Commission (NRC). Code objectives include analyses 

required to support rulemaking, licensing audit calculations, evaluation of 

accident mitigation strategies, evaluation of operator guidelines, and experiment 

planning analysis. RELAP5 has also been used as the basis for a nuclear plant 

analyzer. Specific applications have included simulations of transients in LWR 

systems such as loss of coolant, anticipated transients without scram (ATWS), and 

operational transients such as loss of feedwater, loss of offsite power, station 

blackout, and turbine trip. RELAP5 is a highly generic code that, in addition to 

calculating the behaviour of a reactor coolant system during a transient, can be 

used for simulation of a wide variety of hydraulic and thermal transients in both 

nuclear and non-nuclear systems involving mixtures of steam, water, non-

condensable, and solute. 

 

The RELAP5/MOD3 code is based on a non-homogeneous and non-

equilibrium model for the two-phases that is solved by a fast, partially implicit 

numerical scheme to permit economical calculation of system transients. The 

objective of the RELAP5 development from the outset was to produce a code that 

included important first-order effects necessary for accurate prediction of system 

transients but that was sufficiently simple and cost effective so that parametric or 

sensitivity studies were possible. 

 

The code includes many generic component models from which general 

systems can be simulated. The component models include pumps, valves, pipes, 

heat releasing or absorbing structures, reactor point kinetics, electric heaters, jet 

pumps, turbines, separators, accumulators, and control system components. In 

addition, special process models are included for effects such as form loss, flow at 

an abrupt area change, branching, choked flow, boron tracking, and non-

condensable gas transport. 



 72 

 

The system mathematical models are coupled into an efficient code 

structure. The code includes extensive input checking capability to help the user 

discover input errors and inconsistencies. Also included are free-format input, 

restart, renodalization, and variable output edit features. These user conveniences 

were developed in recognition that generally the major cost associated with the 

use of a system transient code is in the engineering labor and time involved in 

accumulating system data and developing system models, while the computer cost 

associated with generation of the final result is usually small. 

 

The development of the models and code versions that constitute RELAP5 

has spanned approximately 17 years from the early stages of RELAP5 numerical 

scheme development to the present. RELAP5 represents the aggregate 

accumulation of experience in modeling reactor core behaviour during accidents, 

two-phase flow processes, and LWR systems. The code development has 

benefited from extensive application and comparison to experimental data in the 

LOFT, PBF, Semiscale, ACRR, NRU, and other experimental programs. 

4.1.1 Development of RELAP5/MOD 3.3 
The MOD3 version of RELAP5 has been developed jointly by the NRC 

and a consortium consisting of several countries and domestic organizations that 

were members of the International Code Assessment and Applications Program 

(ICAP) and its successor organization, Code Applications and Maintenance 

Program (CAMP). In addition, improvements have been made on behalf of 

several Department of Energy sponsors. The mission of the RELAP5 

development program was to develop a code version suitable for the analysis of 

all transients and postulated accidents in LWR systems, including both large and 

small-break loss-of-coolant accidents (LOCAs) as well as the full range of 

operational transients.  

 

RELAP5/MOD3 was produced by improving and extending the modelling 

base that was established with the release of RELAP5/MOD2 [17], [18], [19], 

[20] in 1985. Code deficiencies identified by members of ICAP and CAMP 
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through assessment calculations were noted, prioritized, and subsequently 

addressed. Consequently, several new models, improvements to existing models, 

and user conveniences have been added to RELAP5 Mod3.3. 

4.1.2 Code architecture 
RELAP5 Mod 3.3 is written in FORTRAN77 for a variety of 64-bit and 

32-bit computers.  

 

RELAP5 is coded in a modular fashion using top-down structuring. The 

various models and procedures are isolated in separate subroutines. The top level 

structure is shown in figure 4.1 and consists of input (INPUT), transient/steady 

state (TRNCTL), and stripping (STRIP) blocks. 

 

RELAP5

IN PUT STRIPTRN CTL
 

Figure 4.1: RELAP 5 top level structure  

 
The input block (INPUT) processes input, checks input data, and prepares 

required data blocks for all program options.  

 

The transient/steady state block (TRNCTL) handles both transient and the 

steady state options. The steady state option determines the steady state conditions 

if a properly posed steady state problem is presented. Steady state is obtained by 

running an accelerated transient until the time derivatives approach zero. Thus, the 

steady state option is very similar to the transient option but contains convergence 

testing algorithms to determine satisfactory steady state, divergence from steady 

state, or cyclic operation. If the transient technique alone were used, approach to 

steady state from an initial condition would be identical to a plant transient from 

that initial condition. Pressures, densities, and flow distributions would adjust 

quickly, but thermal effects would occur more slowly. To reduce the transient 
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time required to reach steady state, the steady state option artificially accelerates 

heat conduction by reducing the thermal capacity of the conductors. 

 

The strip block (STRIP) extracts simulation data from a restart plot file for 

convenient passing of RELAP5 simulation results to other computer programs.  

 

RELAP5 provides detailed input checking for all system models using 

three input processing phases. 

 

• The first phase reads all input data, checks for punctuation and typing 

errors (such as multiple decimal points and letters in numerical fields), and 

stores the data keyed by card number such that the data are easily retrieved. A 

list of the input data is provided, and punctuation errors are noted.  

 

• During the second phase, restart data from a previous simulation are read if 

the problem is a RESTART type, and all input data are processed. In a NEW-

type problem, dynamic blocks must be created. In RESTART problems, 

dynamic blocks may be created, deleted, added to, partially deleted, or 

modified as modeling features and components within models are added, 

deleted, or modified. Extensive input checking is done, but at this level, 

checking is limited to new data from the cards being processed. Relationships 

with other data cannot be checked because the latter may not yet be processed.  

 

• The third phase of processing begins after all input data have been 

processed. Since all data have been placed in fixed common or dynamic data 

(common) blocks during the second phase, complete checking of 

interrelationships can proceed. The initialization required to prepare the model 

for the start of the transient advancement is done at this level. 

 

Figure 4.2 shows the functional modular structure for the transient 

calculations, while figure 4.3 shows the second-level structures for the 

transient/steady state blocks or subroutines. 
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Figure 4.2: Modular structures of transient calculation in RELAP 5 
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Figure 4.3: Transient/Steady state block structure 

 
The subroutine TRNCTL shown in figure 4.3 consists only of the logic to 

call the next lower level routines. Subroutine TRNSET performs final cross-

linking of information between data blocks, sets up arrays to control the sparse 

matrix solution, establishes scratch work space, and returns unneeded computer 

memory. Subroutine TRAN, the driver, controls the transient advancement of the 

solution. Nearly all the execution time is spent in this block, and this block is the 

most demanding of memory. Nearly all the dynamic data blocks must be in the 
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central memory, and the memory required for instruction storage is high, since 

coding to advance all models resides in this block. When transient advances are 

terminated, the subroutine TRNFIN releases space for the dynamic data blocks 

that are no longer needed. A description of the functions of all of the modules 

(subroutines) driven by TRAN is provided in [21]. 

4.1.3 Hydrodynamic model 
The RELAP5 hydrodynamic model is a one-dimensional, transient, two-

fluid model for flow of a two-phase steam-water mixture that can contain non-

condensable components in the steam phase and/or a soluble component in the 

water phase. 

 

The RELAP5 hydrodynamic model contains several options for invoking 

simpler hydrodynamic models. These include homogeneous flow, thermal 

equilibrium, and frictionless flow models. These options can be used 

independently or in combination. The homogeneous and equilibrium models were 

included primarily to be able to compare code results with calculations from the 

older codes based on the homogeneous equilibrium model. 

 

The two-fluid equations of motion that are used as the basis for the 

RELAP5 hydrodynamic model are formulated in terms of volume and time-

averaged parameters of the flow. Phenomena that depend upon transverse 

gradients, such as friction and heat transfer, are formulated in terms of the bulk 

properties using empirical transfer coefficient formulations. In situations where 

transverse gradients cannot be represented within the framework of empirical 

transfer coefficients, such as subcooled boiling, additional models specially 

developed for the particular situation are employed. The system model is solved 

numerically using a semi-implicit finite- difference technique. The user can select 

an option for solving the system model using a nearly-implicit finite-difference 

technique, which allows violation of the material Courant limit10. This option is 

suitable for steady state calculations and for slowly varying, quasi-steady transient 

calculations. 
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The basic two-fluid differential equations possess complex characteristic 

roots that give the system a partially elliptic character and thus constitute an ill-

posed initial boundary value problem. In RELAP5, the numerical problem is 

rendered well-posed by the introduction of artificial viscosity terms in the 

difference equation formulation that damp the high frequency spatial components 

of the solution. The ill-posed character of the two-fluid model is a result of the 

spatial averaging process and neglect of higher-order physical effects in the 

momentum formulation.  

 

The semi-implicit numerical solution scheme uses a direct sparse matrix 

solution technique for time step advancement. It is an efficient scheme and results 

in an overall grind time per node on the CRAY XMP/24 of ~0.00053 seconds, on 

the DEC Alpha 3000 of ~0.00057 seconds, and on the DECstation 5000 of 

~0.00259 seconds. The method has a material Courant time step stability limit. 

However, this limit is implemented in such a way that single-node Courant 

violations are permitted without adverse stability effects. Thus, single small nodes 

embedded in a series of larger nodes will not adversely affect the time step and 

computing cost. The nearly-implicit numerical solution scheme also uses a direct 

sparse matrix solution technique for time step advancement. This scheme has a 

grind time that is 25 to 60% greater than the semi-implicit scheme but allows 

violation of the material Courant limit for all nodes. 

 

The RELAP5 thermalhydraulic model solves eight field equations for 

eight primary dependent variables. The primary dependent variables are pressure 

(P), phasic specific internal energies (Ug, Uf), vapor volume fraction (void 

fraction) (�g), phasic velocities (vg, vf), non-condensable quality (Xn), and boron 

density (�b). The independent variables are time (t) and distance (x). Non-

condensable quality is defined as the ratio of the non-condensable gas mass to the 

total gaseous phase mass, i.e., 

 

                                                                                                                                                               
10 i.e. if the nearly-implicit scheme is employed to solve the field equations, the time step used in 
the scheme can be greater than the material Courant limit 
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where Mn is the mass of non-condensable in the gaseous phase and Ms is the mass 

of the steam in the gaseous phase.  

The secondary dependent variables used in the equations are phasic 

densities, phasic temperatures (Tg, Tf), saturation temperature (Ts), and non-

condensable mass fraction in non-condensable gas phase (Xni) for the i-th non-

condensable species, i.e., 
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where Mni is the mass of the i-th non-condensable in the gaseous phase, Mn is the 

total mass of non-condensable gas in the gaseous phase and N is the number of 

non-condensables. 

 

The basic field equations for the two-fluid non-equilibrium model consist 

of two phasic continuity equations, two phasic momentum equations, and two 

phasic energy equations. The equations are recorded in differential stream tube 

form with time and one space dimension as independent variables and in terms of 

time and volume-average dependent variables. 

 

The semi-implicit solution scheme is based on replacing the system of 

differential equations with a system of finite-difference equations partially 

implicit in time. The method has a material Courant time step stability limit. 

However, this limit is implemented in such a way the single-node Courant 

violations are permitted without adverse stability effects. Thus, single small nodes 

embedded in a series of larger nodes will not adversely affect the time step and 

computing cost. 
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For problems where the flow is expected to change very slowly with time, 

it is possible to obtain adequate information from an approximate solution based 

on very large time steps. This would be advantageous if a reliable and efficient 

means could be found for solving difference equations treating all the terms by 

implicit differences. Unfortunately, the state of the art is less satisfactory here than 

in the case of semi-implicit schemes.  

To reduce the number of calculations required for solving fully implicit 

difference schemes, fractional step methods have been tried. This is the basic idea 

in the nearly-implicit scheme. 

4.1.4 Heat structure models 
Heat structures provided in RELAP5 allow the calculation of the heat 

transferred across solid boundaries of hydrodynamic volumes. Modeling 

capabilities of heat structures are general and include fuel pins or plates with 

nuclear or electrical heating, heat transfer across steam generator tubes, and heat 

transfer from pipe and vessel walls. Heat structures are assumed to be represented 

by one-dimensional heat conduction in rectangular, cylindrical, or spherical 

geometry. Surface multipliers are used to convert the unit surface of the one-

dimensional calculation into the actual surface of the heat structure. Temperature 

dependent thermal conductivities and volumetric heat capacities are provided in 

tabular or functional form either from built-in or user-supplied data. 

 

Finite differences are used to advance the heat conduction solutions. Each 

mesh interval may contain different mesh spacing, different material, or both. The 

spatial dependence of the internal heat source may vary over each mesh interval. 

The time-dependence of the heat source can be obtained from reactor kinetics, one 

of several tables of power versus time, or a control system variable. Boundary 

conditions include symmetry or insulated conditions, a correlation package, tables 

of surface temperature versus time, heat transfer rate versus time, and heat transfer 

coefficient versus time or surface temperature. The heat transfer correlation 

package can be used for heat structure surfaces connected to hydrodynamic 

volumes, and contains correlations for convective, nucleate boiling, transition 
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boiling, and film boiling heat transfer from the wall to water and reverse transfer 

from water to wall including condensation. 

 

Temperature distributions in heat structures are assumed to be represented 

adequately by a one dimensional form of the transient heat conduction equation in 

rectangular, cylindrical, or spherical coordinates. The spatial dimension of the 

calculation is along any one of the coordinates in rectangular geometry and is 

along the radial coordinate in cylindrical or spherical geometry. The one-

dimensional form assumes no temperature variations along the other coordinates. 

 

Finite differences are used to advance the heat conduction solution. Each 

mesh interval may contain different mesh spacing, different material or both. For 

each material specified, corresponding thermal property data must be entered to 

define the thermal conductivity and the volumetric heat capacity as functions of 

temperature; the temperature-dependence can be described by tabular data or by a 

set of functions. 

 

Heat structures can have an internal volumetric heat source that can be 

used to represent nuclear, gamma or electrical heating. The source is assumed to 

be a separable function of space and time. The space function is assumed to be 

constant over a mesh interval but may vary from mesh interval to mesh interval. 

The time function may be: total reactor power, fission power or fission product 

decay power from the reactor kinetics calculation; a control variable; or may be 

obtained from a table of power versus time. 

 

For each heat structure, boundary condition input specifies the type of 

boundary condition, the possible connection of a heat structure surface to a 

hydrodynamic volume and the relation of the one-dimensional heat conduction 

solution to the actual three-dimensional nature of the structure. Boundary 

conditions include: symmetry or insulated conditions; a set of heat transfer 

correlations that cover the various modes of the heat transfer from a surface to 

fluid (convection, nucleate boiling, transition boiling, film boiling) and vice versa 

(including condensation); tables of surface temperature versus time; heat transfer 
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rate versus time heat transfer coefficient versus time or versus surface 

temperature.  

 

A user option allows an explicit or an implicit coupling between the heat 

conduction-transfer and hydrodynamic time advancements. With the explicit 

option, the changes in hydrodynamics temperatures are assumed zero at this point 

and the new time temperatures are given by equations. If the implicit 

advancement is used, the final temperatures are computed after the fluid 

temperatures are computed. 

4.1.5 Trip system 
The trip system consists of the processing of logical statements. Each trip 

statement is a simple logical statement that has a true or false result and an 

associated variable, TIMEOF. The TIMEOF variable is -1.0 whenever the trip is 

false, and contains the time the trip was last set true whenever the trip is true. This 

variable allows for time delays and unit step functions based on events during the 

transient. 

 

Within the structure of RELAP5, the trip system is considered to be only 

the evaluation of the logical statements. The decision of what action is needed, 

based on trip status, resides within other models. For example, valve models are 

provided that open or close the valve based on trip values; pump models test trip 

status to determine whether a pump electrical breaker has tripped. 

 

Two types of trip statements are provided: variable and logical trips. Since 

logical trips involve variable trips and other logical trips, complex logical 

expressions can be constructed from simple logical statements. Both types of trips 

can be latched or unlatched. A latched trip, once set true, is no longer tested and 

remains true for the remainder of the problem or until reset at a restart. An 

unlatched trip is evaluated every time step. 
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4.1.6 Control system 
The control system provides the capability to evaluate simultaneous 

algebraic and ordinary differential equations. The capability is primarily intended 

to simulate control systems typically used in hydrodynamic systems, but it can 

also model other phenomena described by algebraic and ordinary differential 

equations. Another use is to define auxiliary output quantities, such as differential 

pressures, so they can be printed in major and minor edits and be plotted. 

 

The control system consists of several types of control components. Each 

component defines a control variable as a specific function of time-advanced 

quantities. The time-advanced quantities include hydrodynamic volume, junction, 

pump, valve, heat structure, reactor kinetics, trip quantities, and the control 

variables themselves (including the control variable being defined). This permits 

control variables to be developed from components that perform simple, basic 

operations. 

4.1.7 Special techniques 
The mass from the state relationship is compared to the mass from the 

continuity equation, and the difference is a measure of the truncation error 

inherent in the numerical solution. This is the main method used to control the 

time step and thus control the truncation error. Other methods are also used.  

 

Special techniques are also used to mitigate mass and energy errors. These 

are: 

1) a second evaluation of the semi-implicit scheme equations using non-

linearized time derivatives,  

2) velocity flip-flop situations, 

3) non-condensable gas appearance situations.  

 

Special methods are provided in the code for use in obtaining initial 

conditions. Generic control component options are available to allow the user to 

minimize the time, effort, and cost to achieve steady state. 
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4.2 PARCS 2.4 CODE 

4.2.1 Introduction 
PARCS is a three-dimensional (3-D) reactor core simulator which solves 

the steady state and time dependent neutron diffusion equations to predict the 

eigenvalue and the dynamic response of the reactor to reactivity perturbations 

such as control rod movements or changes in the temperature/fluid conditions in 

the reactor core. The code is applicable to both PWR and BWR cores loaded with 

either rectangular or hexagonal fuel assemblies. The neutron diffusion equation is 

solved with two energy groups for the rectangular geometry option, whereas any 

number of energy groups can be used for the hexagonal geometry option. PARCS 

is coupled directly to the thermalhydraulics systems codes TRAC-M and RELAP5 

which provide the temperature and flow field information to PARCS during the 

transient. The thermalhydraulic solution is incorporated into PARCS as a 

feedback into the few group cross-sections. The coarse mesh finite difference 

(CMFD) formulation is employed in PARCS to solve for the neutron fluxes in the 

homogenized nodes. In rectangular geometry, the analytic nodal method (ANM) 

is used to solve the two-node problems for accurate resolution of coupling 

between nodes in the core, whereas the triangle-based polynomial expansion 

nodal (TPEN) method is used for the same purpose in hexagonal geometry. 

 

Since the initial release of the NRC version of PARCS (V1.01) in 

November 1998 [22], there have been numerous functional improvements and 

code feature extensions: addition of a pin power reconstruction feature, 

input/output system renovation, modification of TRAC-M coupling routines, 1D 

kinetics capability addition, dynamic memory allocation, automatic 

thermalhydraulic to neutronic mapping, a Windows user interface, UNIX on-line 

graphics, and finally the hexagonal geometry option was implemented initially 

with only two-group solutions and then was extended to multigroup solutions.  

 

The major calculation features in PARCS include the ability to perform 

eigenvalue calculations, transient (kinetics) calculations, Xenon transient 
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calculations, decay heat calculations, pin power calculations, and adjoint 

calculations. The primary use of PARCS involves a 3-D calculation model for the 

realistic representation of the physical reactor. However, various one-dimensional 

(1D) modeling features are available in PARCS to support faster simulations for a 

group of transients in which the dominant variation of the flux is in the axial 

direction, as for example in several BWR applications.  

 

Numerous sophisticated spatial kinetics calculation methods have been 

incorporated into PARCS in order to accomplish the various tasks with high 

accuracy and efficiency. For example, the CMFD formulation provides a means 

of performing a fast transient calculation by avoiding expensive nodal calculations 

at times in the transient when there is no strong variation in the neutron flux 

spatial distribution. Specifically, a conditional update scheme is employed in 

PARCS so that the higher order nodal update is performed only when there are 

substantial changes in the core condition to require such an update. The temporal 

discretization is performed using the theta method with an exponential 

transformation of the group fluxes. A transient fixed source problem is formed 

and solved at each time step in the transient. For spatial discretization, the 

stabilized ANM two-node kernel or the multigroup TPEN kernel is used to obtain 

the nodal coupling relation that represents the interface current as a linear 

combination of the node average fluxes of the two nodes contacting the interface. 

 

The solution of the CMFD linear system is obtained using a Krylov 

subspace method which utilizes a BILU3D preconditioner in rectangular 

geometry and a point ILU preconditioner in hexagonal geometry. The eigenvalue 

calculation to establish the initial steady state is performed using the Wielandt 

eigenvalue shift method. The pin power calculation method employs a 

reconstruction scheme in which predefined heterogeneous power form functions 

are combined with a homogeneous intranodal flux distribution. The homogeneous 

flux shape is obtained by solving analytically a two-dimensional boundary fixed 

source problem consisting of the surface average currents specified at the four 

boundaries.  
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PARCS was written in FORTRAN90 and its portability has been tested on 

various platforms and operating systems, which include SUN Solaris Unix, DEC 

Alpha Unix, SGI Unix, HP Unix, LINUX, and various Windows OS (i.e. 95, 98, 

NT, and 2000). During the testing, it was determined that there are minor platform 

dependencies that need to be treated by compiler directives. A typical compiler 

directive is F90MODULE that must be used on the LINUX machines for dynamic 

memory allocation using F90 modules instead of the pointer commons which are 

the basis of the dynamic memory allocation scheme of PARCS.  

4.2.2 Calculation features 
PARCS is equipped with various calculation modules needed to predict the 

global and local response of the reactor in steady state and transient conditions. 

The various features of PARCS are described in this section along with the 

corresponding modules. 

4.2.2.1 Eigenvalue calculation 
In order to establish the initial steady state, it is necessary to perform an 

eigenvalue calculation. PARCS performs the eigenvalue calculation using the 

Wielandt eigenvalue shift method. The eigenvalue obtained is used to adjust the 

nu values in the subsequent transient calculation in order to make the initial 

reactor state critical. In addition to the standard k-eff calculation for a given 

reactor configuration, the critical boron concentration (CBC) search function is 

available. The type of search is defined in the SEARCH card of the CNTL block 

input. 

4.2.2.2 Transient (kinetics) calculation  
This is the primary function of PARCS that solves the time dependent 

neutron diffusion equation involving both delayed and prompt neutrons. The 

transient calculation option is turned on and off by the TRANSIENT card in the 

CNTL block. The temporal differencing based on the exponential transform and 

the theta method yields a transient fixed source problem at each time step. The 

fixed source problem is solved using the Coarse Mesh Finite Difference (CMFD) 

method in which a conditional nodal update scheme is employed. The temporal 

discretization schemes can be specified by the THETA and EXPO_OPT cards in 
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the TRAN input block. Exponential extrapolation can be used to obtain an initial 

flux guess at each new time step by activating this option in the expo_opt card. 

The conditional nodal update scheme activates the higher order nodal update only 

when there are substantial local cross-section changes. The conditional nodal 

update is controlled by the EPS_XSEC card in the TRAN block. 

4.2.2.3 Xenon transient calculation 
For slow reactor transients, it is essential to provide a Xenon transient 

capability. In PARCS, the conventional quasi-static treatment of xenon transients 

is used that employs the eigenvalue problem solver instead of the transient fixed 

source problem. The number densities of Xenon and Samarium are updated by 

solving the respective balance equations using the fluxes resulting from the 

eigenvalue calculation. The Xenon option is controlled in the XE_SM card in the 

CNTL block by choosing one of the following options: 1) No Xenon, 2) 

Equilibrium Xenon, or 3) Transient Xenon. 

4.2.2.4 Decay heat calculation 
A simplified decay heat model involving six groups of decay heat 

precursor groups is employed in PARCS. The 6 group decay heat precursor 

equation is treated in the same way as the delayed neutron precursor equation. 

The solution of the precursor equation is thus nodewise and provides at each time 

step the decay heat to be summed with the fission power in order to determine the 

total power produced in each node. Default values of the precursor fraction and 

decay constant of the 6 groups are provided for UO2 fueled cores which are 

operated for a sufficiently long period of time. The option exists for the user to 

specify alternate values for the precursor fractions and decay constants. The decay 

heat option is specified in the DECAY_HEAT card in the CNTL block and the 

input parameters are specified in the DHP_BETA and DHP_LAMBDA cards in 

the XSEC block. 

4.2.2.5 Pin power calculation 
The primary dependent variables in PARCS are the node average fluxes 

and interface currents. In order to obtain local pin power distributions, it is thus 

necessary to “reconstruct” pin powers. This is performed in PARCS by 
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multiplying the heterogeneous power form functions with the homogeneous 

intranodal flux distribution. The homogeneous intranodal flux is calculated by 

performing an analytic solution of a 2D fixed source problem in which the 

surface average currents are specified at the four boundaries. The surface average 

currents are obtained from the converged node average flux distribution at a given 

state. Pin power reconstruction is performed for both the steady state and transient 

conditions. The pin power calculation option is activated by the PIN_POWER 

card in the CNTL block and the heterogeneous power form functions are supplied 

via the PFF block. Corner discontinuity factors can be used to enhance the 

accuracy of the pin power distribution and can be specified in the CDF card in the 

XSEC block. In order to save computing time for the pin power calculation, only 

certain fuel assemblies can be selected for the pin power calculation in the 

PINCAL_LOC card of the GEOM block. The transient pin power calculation 

need not be performed at every time step since the pin-to-box factor does not 

change appreciably unless there is a substantial change in the core configuration. 

The transient pin power calculation frequency is activated by the PIN_FREQ 

card in the TRAN block. 

4.2.3 Modeling features 
One of the essential neutronics problems for a reactor core is to represent 

the physical system with an accurate numerical model. Among the various 

fundamental modeling issues in the reactor kinetics calculation are the geometric 

representation, the cross-section representation, and the thermalhydraulics (T/H) 

feedback modeling. PARCS provides a 3-D geometric representation of the core 

that can be reduced to 2D, 1D, or 0D by the choice of the appropriate boundary 

conditions. However, a special 1D kinetics capability is also available for more 

accurate and versatile 1D modeling. Various geometric representation features 

will be described in the first and fourth subsections below. The basic cross-section 

representation scheme in PARCS is to functionalize the macroscopic cross-

sections with linear or quadratic dependence on the T/H state variables. The 

details of the PARCS cross-section representation schemes are provided in the 

second subsection. For thermalhydraulics, PARCS uses an external T/H solver 

which greatly extends its range of applicability. The original internal T/H solver 
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of PARCS is intended primarily for code testing and not for practical applications, 

and therefore only the external T/H features are detailed in the third subsection. 

The input description for the internal T/H solver is still provided since PARCS 

continues to process this block. 

4.2.3.1 Geometric representation 
In PARCS, the reactor core is modeled by a group of homogeneous 

computational nodes. Radially, the computational node can be either rectangular 

or hexagonal. The size of the node is of the order of fuel assembly pitch, while 

axially the size is 10~30 cm. In the rectangular option, the core geometry is 

specified in the GEOM block, whereas the block name is changed to GEOMH for 

the hexagonal option. The core radial configuration is specified using the unit of a 

fuel assembly by the RAD_CONF card in the GEOM block. The radial node size 

is then specified by the number of subdivisions of the assembly node by the 

NEUTMESH_X and NEUTMESH_Y cards. So the number of nodes per 

assembly can be freely chosen as nsubx*nsuby. Normally, one or four nodes per 

assembly are used for practical calculations. However, it is possible to perform a 

fine mesh calculation using the geometry input structure. Also by taking the 

assemblywise configuration as the pinwise configuration, a pin-by-pin 

heterogeneous core representation is also possible. The refined geometry feature 

is, however, limited to the rectangular case only. In the hexagonal case, a hexagon 

is always represented with one node although internally it is divided into 6 

triangular nodes within the TPEN kernel. 

4.2.3.2 Cross-section functionalization 
PARCS uses macroscopic cross-sections which can be input in either the 

two-group or multi-group form using the same input cards. The macroscopic 

nodal cross-sections are functionalized on boron concentration (B, in ppm), square 

root of fuel temperature, moderator temperature and densities, void fraction and 

the effective rodded fractions. Only the linear dependence of cross-sections is 

considered on these state variables except for the moderator density and void 

fractions for which the quadratic variation is provided. Symbolically, the cross-

sections are functionalized as: 

 



 89 

( ) ( )
( ) ( ) CRmmmmmm

ffmmf

aaDDaDDaTTa

TTaBBaDTTB

∆Σ+++−+−+−+

+−+−+Σ=�
ξαα

ξα
2

76
2

050403

02010

)(

)(,,,,,
 (4.3) 

 

Here the effective rodded fraction is defined as the product of the 

volumetric rodded fraction and the flux depression factor that is computed by the 

decusping routine for the partially rodded node. For Xenon calculations, the 

Xenon and Samarium microscopic cross-sections are represented in the same 

form.  

 

Currently, two special benchmark cross-section representation types are 

available: one for the OECD MSLB (Main Steam Line Break) problem and the 

other for the OECD PBTT (Peach Bottom-2 Turbine Trip) problem. 

4.2.3.3 Thermalhydraulics feedback 
PARCS can operate either with an internal T/H  model or coupled with 

other codes (TRAC or RELAP) that provide the T/H model (external T/H ). 

 

The time step size used in the system T/H calculation is often selected very 

small because of numerical stability considerations. Sometimes it is so small that 

no considerable changes occur in the core T/H condition and performing a 

neutronic calculation with such a small change would be unnecessary since the 

flux variation would also be small. In order to improve code efficiency, a skip 

factor can be used in the coupled calculation such that the T/H code calls PARCS 

based on this user defined frequency. Different skip factors can be specified for 

the steady state and transient calculations in the EXT_TH card. In addition, since 

the T/H  time step size can in some cases be smaller than that specified in PARCS 

input, a conditional update scheme is implemented in the code such that PARCS 

performs the spatial kinetics calculation only when the “accumulated time step 

size” (i.e. the sum of time step sizes sent from the T/H code since the last PARCS 

update) is greater than or equal to the input PARCS time step size. 
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4.3 RELAP5/PARCS COUPLING 

4.3.1 Features of the RELAP5/PARCS codes 
The coupled RELAP5/PARCS code utilizes a General Interface, which 

manages the mapping of property data and solution variables between 

thermalhydraulics and spatial kinetics codes. To meet the requirements of this 

General Interface separate data map routines for both RELAP5 and PARCS are 

utilized. The RELAP5-Specific Data Map Routine (RDMR) functions as a 

secondary interface between RELAP5 and the General Interface, and the PARCS-

Specific Data Map Routine (PDMR) functions as a secondary interface between 

PARCS and the General Interface. In this design, RELAP5, the General Interface, 

and PARCS are executed as separate processes and communicate with each other 

through the use of message-passing protocols in the Parallel Virtual Machine 

(PVM) package. 

 

The coupled RELAP5/PARCS code utilizes an internal integration scheme 

in which the solution of the system and core thermalhydraulics is obtained by 

RELAP5 and only the spatial kinetics solution is obtained by PARCS. In this 

scheme, PARCS utilizes the thermalhydraulics solution data (e.g. moderator 

temperatures/densities and fuel temperatures) calculated by RELAP5 to 

incorporate appropriate feedback effects into the cross-sections. Likewise, 

RELAP5 takes the space-dependent powers calculated in PARCS and solves for 

the heat conduction in the core heat structures. 

 

The temporal coupling of RELAP5 and PARCS is explicit in nature, and 

the two codes are locked into the same time step. For this implementation, the 

RELAP5 solution lags the PARCS solution by one time step. Specifically, the 

advancement of the time step begins with RELAP5 obtaining the solution to the 

hydrodynamic field equations using the power from the previous time step. The 

property data obtained from this solution is then sent to PARCS and the power at 

the current time step is computed. 
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PARCS is coupled with either TRAC-M or RELAP5 by the EXT_TH 

card in the CNTL block. The coupling between PARCS and the T/H (Thermal-

Hydraulic) code is achieved by the interprocess communication protocol, PVM. 

The two processes are loaded in parallel and the PARCS process transfers the 

nodal power data to the T/H process. The T/H process then sends back the 

temperature (fuel and coolant) and density data back to the PARCS process. 

Originally, it was necessary to execute a third intermediate process, GI, which 

manages the data transfer between the two processes. But this process has been 

integrated into PARCS in the release adopted in the present work so that only two 

processes are to be run in parallel.  

 

In general, the neutronic node structure is different from the T/H node 

structure. The difference is reconciled by a mapping scheme. The original 

mapping was explicit in that the fractions of different T/H nodes belonging to a 

neutronic node had to be specified in a file called MAPTAB for all the neutronic 

nodes. In order to reduce the user effort to prepare the MAPTAB file, automatic 

mapping schemes were developed for the coupled TRAC-M/PARCS code that 

take data from both PARCS and TRAC-M input files to generate the mapping 

information internally.  

4.3.2 The MAPTAB file 
The MAPTAB file basically allows the association among thermal 

hydraulic and neutronic nodes (see figure 4.4). Nevertheless through its functions 

it is possible to set the quantity of bypass associated to each node, to set the 

reflector properties, the method of calculating Doppler temperature and the trip 

logics (e.g. SCRAM).  
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Figure 4.4: Association between thermalhydraulic and neutronic nodalization 

The MAPTAB (mapping table). It is composed by five card options: 

“REFLPROP”, “TABLE1”, “TABLE2”, “TRIP”, and “DOPL”. The function of 

these cards is the following: 

 

TABLE1: This card relates to the mapping between thermalhydraulic volumes 

and neutronic nodes. Each line of data which follows is read in free format and 

contains three numbers (integer, integer, real) corresponding to: 

 

RELAP5 Volume Number     PARCS Node Number     Weighting Factor 

 

TABLE2: This card relates to the mapping between heat structures and neutronic 

nodes. Each line of data which follows is read in free format and contains three 

numbers (integer, integer, real) corresponding to: 

 

RELAP5 Heat Structure Number   PARCS Node Number Weighting Factor 

 

TRIP: This card provides the trip unit number used in RELAP5 for detecting 

control rod scram. Only one line of data needs to be read following this card, and 

this line, which is read in free format, contains the single integer: 
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RELAP5 Trip Unit Number 

 

DOPL: This card is used to determine the method of calculating Doppler 

temperature in the PARCS-Specific Data Map Routine. Only one line of data 

needs to be read following this card, and there are only two options for calculating 

Doppler temperature: 

 

LINC weighting factor 

 

or 

 

AVG 

 

If “AVG” is read, then the average fuel temperature from RELAP5 will be used 

and no other data is required. If “LINC” is read, then a linear combination of the 

centerline and surface fuel temperatures will be used, and an additional weighting 

factor of type real is required to be input. This weighting factor is applied in the 

following manner: 

( ) S
ffdopl TTT ωω +−= 01  (4.4) 

4.3.3 Calculation methodology 
The coupling between PARCS and RELAP5 is external and the calculation 

is performed via PVM as above mentioned. The methodology to perform 

calculations is explained hereafter and is illustrated in figure 4.5. 
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Figure 4.5: RELAP5/PARCS external coupling calculation methodology 

 
PARCS can be executed with either TRAC-M or RELAP5. The user must 

run two programs simultaneously; the following sequence can be used with either 

TRAC-M or RELAP: 

 

1. run RELAP in the stand-alone mode for flow initialization (invoking no 

PARCS calculations) and generate a restart file at the end of the run (RELAP 

steady state stand alone). 

 

2. using the above restart file run the coupled steady state case and generate the 

steady state restart files for both PARCS and TRAC-M. Adjust the external 

T/H skip factor so that excessive calls of PARCS are avoided. 

(RELAP/PARCS coupled steady state). 

 

3. using the restart files, run the coupled transient case (RELAP/PARCS coupled 

transient). 



 95 

4.4 VALKIN CODE 

4.4.1 Introduction 
To simulate the behaviour of a nuclear power reactor it is necessary to be 

able to integrate the time dependent neutron diffusion equation inside the reactor 

core. 

In this way, a modal method has been developed based on the assumption 

that the solution for the neutron flux of the studied transient can be expressed 

approximately as a linear combination of the dominant eigenfunctions of a static 

auxiliary problem, known as the Lambda modes, associated with a static reactor 

configuration. To calculate this auxiliary eigenfunctions has been used a nodal 

collocation method to discretize the equations, and an iterative method to obtain 

the dominant eigenvalues and their corresponding eigenfunctions. 

This nodal modal method has been implemented in a code written in 

FORTRAN called VALKIN, which calculates the dominant Lambda modes 

associated with a given configuration of the reactor core, making use of the 

implicitly restarted Arnoldi method.  

 

This process allows integrating the neutron diffusion equation using a 

moderate number of modes. This updating process generalizes the quasi-static 

method for the neutron diffusion equation and allows to decrease the frequency of 

the actualization of the shape function without loss of  accuracy. 

The code VALKIN is useful to study transients where the number of 

necessary eigenmodes is limited; it can also be useful to analyze transients with a 

physical interpretation for the different amplitudes of the neutron flux expansion, 

as the ones appearing in the study of in-phase and out-of-phase oscillations of 

boiling water reactors. 

4.4.2 Nodal modal method 
Under general assumptions regarding the behavior of the neutron flux in a 

thermal nuclear power reactor [23], its evolution in time can be modeled by the 

two-energy groups approximation of the neutron diffusion equations, which in 

standard notation can be expressed as: 
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and M is the fission-production operator �
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The diffusion constants and cross-sections appearing in the net loss 

operator (L) depend on the reactor materials, that is, they are position dependent 

functions.  

On the other hand, a reactor core is called critical when the fuel loading is 

such that the neutron-production rate exactly equals the neutron-loss rate. It is 

possible to force the criticality dividing the neutron-production rate due to fission 

by a positive number, �, in such a way that a physically acceptable solution exist 

for the equation  

 

φ
λ

φ ML
1=  (4.7) 

 

This equation is known as the Lambda Modes equation and it is assumed 

that there exists an infinite set of positive eigenvalues, �n, and their corresponding 
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eigenfunctions, �n, satisfying the continuity and boundary conditions imposed to 

the neutronic flux in the reactor core. 

The biggest eigenvalue, �0, satisfying the equation (4.7), is associated with 

the effective multiplication factor of the reactor as keff=�0, and its corresponding 

eigenfunction, �0, is called the fundamental mode and describes the steady state 

of the neutron flux in the reactor core. 

 

In order to obtain the kinetic modal expansion equations, it is supposed 

that the neutron flux can be expanded in terms of the �-modes as  

 

)()(),(
0

xtntx l
l

l

�� φφ �
∞

=
=  (4.8) 

 

where )(xl

�φ are the Lambda modes of the stationary configuration of the reactor 

core. That is, they are the eigenfunctions associated with the problem  

 

l
l

l ML ψ
λ

ψ 00
1=  (4.9) 

where L0 and M0 are the loss and production operators of the stationary 

configuration of the reactor. 

 

Then, from the neutron diffusion equation and the neutron precursor 

concentration equations using the expansion in these equations and the 

biorthogonality relation of the eigenfunctions and introducing the feedback 

reactivities and the delayed feedback reactivities, it has been obtained the modal 

expansion equations.  

 

A modal interpretation for the in-phase and the out-of-phase oscillations of 

a BWR reactor has given associating the in-phase oscillation with the amplitude 

of the fundamental mode of the reactor and interpreting the out-of-phase 

oscillations as a contribution of the subcritical modes amplitudes to the 

oscillations.  
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For a numerical analysis of these oscillations, it is necessary to choose an 

efficient and fast way of calculating a set of dominant eigenvalues associated with 

a static configuration of the reactor core and their corresponding eigenfunctions, 

and also the adjoint eigenfunctions.  

 

The first step to do this consists of discretizing the reactor in N nodes, 

where the nuclear properties are supposed to be constant. Next, a nodal 

collocation method [24], which assumes a truncated expansion of the neutron flux 

in terms of Legendre polynomials, is used. This method permits to discretize the 

spatial part of the equations, approximating the equations (4.5) and (4.6) by a set 

of ordinary differential equations (where L and M now are matrix).  

 

ψ
λ

ψ ML
1=  (4.10) 

 

Then, using an iterative method it is obtained the dominant eigenvalues 

and their corresponding eigenfunctions [25].  

4.4.2.1 Modes updating 
For realistic transients, the nuclear cross–sections are time dependent 

functions and to use the modal method proposed above, it would be necessary to 

calculate a large amount of modes. This is prohibitive from the computational 

point of view. Thus, it has been adopted some simplifying assumptions: only a set 

of dominant modes are considered to be sufficient to describe the neutronic flux in 

BWR instability events11; so it is calculated only a small number of modes and 

they are updated each certain time step, �ti in order to consider the time 

dependence of the cross-sections. In this way, to integrate the neutron diffusion 

equation in the time interval [ti, ti+1], it is used the Lambda modes associated with 

the problem   

i
l

i
i
l

i
l

i ML ψ
λ

ψ 1=  (4.11) 

                                                           
11 It is important to remark that this expansion will be accurate also taking a small number of 
modes as far as the Lambda modes of the reactor do not change very much in time. 
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where Li and Mi are the matrices associated with the reactor configuration at time 

ti. 

 

To obtain the initial conditions for the time integration, VALKIN starts 

from a critical configuration of the reactor. To achieve this critical reactor 

configuration the Lambda modes problem has been solved for a given initial 

configuration. 

 

The thermalhydraulic coupling for the equations obtained is given by the terms 

including the (dynamical) feedback reactivities and the delayed feedback 

reactivities, due to the dependence of the nuclear cross-sections on the local 

distribution of voids and temperatures.  

4.5 SIGNAL MODAL DECOMPOSITION  

Under oscillating conditions, the neutronic power measured by LPRM’s in 

a reactor core has several contributions: the in-phase or global oscillation 

associated with the fundamental mode of a stationary configuration of the reactor, 

and the out-of-phase ones, to be considered as oscillations due to the excitation of 

subcritical modes through thermohydraulic mechanisms together with the noise 

inherent in the signal. Therefore, it will be interesting to decompose the LPRM’s 

neutronic signals in its different contributions to study the nature of the oscillation  

If the neutronic flux in the reactor core is known, the local neutronic power 

can be expressed as:  

( )2211 φφα ffP Σ+Σ=  (4.12) 

 

The modal methods are based on the expansion of the neutronic flux in 

terms of Lambda modes, taken as basis functions. Similarly, the power harmonic 

modes are introduced 

 

( )nfnfnP ,22,,11, φφα Σ+Σ=  (4.13) 

 

where �g,n g=1,2 are the fast and thermal components of the n-th Lambda mode. 
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The method assumes that the neutronic power (P) can be approximated as 

a truncated expansion in terms of these power modes 

 

�≈
n

nn PaP  (4.14) 

 

It is interesting to remark that this expansion will be accurate taking also a 

small number of modes as far as the Lambda modes of the reactor do not change 

very much in time. 

 

Supposing to have an ideally monitored reactor core, i.e. to know the 

neutronic power in each of its points and also to know the fast adjoint Lambda 

modes, it is possible obtain the amplitudes of the power modes, al, which vary in 

time as 
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R

l
l

l Pdx
N

ta ,1φν
 (4.15) 

and, with these amplitudes, the power decomposition in local modes has been 

already obtained. Hence, depending on which of these amplitudes oscillate, it is 

possible classify the instability as in-phase, out-of-phase, or both. 

 

But, the only information available is the neutronic power measured by the 

LPRM’s. Therefore, for each cell, (i, j, k), of the reactor core discretization, it has 

been to consider the local harmonic power modes Pn,i,j,k. 

For a given LPRM, l, it has been defined the n-th modal power 

contribution to the LPRM as  

�=
ji

kjinkln PLP
,

,,,,,  (4.16) 

 

where i, j, sum over the adjacent nodes to LPRM l shown in Fig.4.6. 

Now, is supposed that the LPRM’s signal can be expressed as  

( ) ( )�=
n

kln
k
nkl LPtatLPRM ,,,  (4.17) 
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and analogously to the continuous case, it is used the fast adjoint modes to 

construct a weighting factor to obtain the power amplitudes an(t): 
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 (4.18) 

with 

� Σ+Σ=
ijk

ijknijkijkfnijkijkfnijkln VN )( ,,22,,11,, φνφνφ  (4.19) 

Vijk is the volume of the node (i,j,k), �g,ijk,n is the average flux of group g in node 

(i,j,k) corresponding to mode n, and �1,ijk,n is the average fast adjoint neutronic 

flux in node (i,j,k) corresponding to mode n. 

 

 

Figure 4.6: Adjacent nodes to LPRM 

The analysis of the LPRM signals is based on the in-house codes 

programmed in Fortran77 developed in the Universidad Politecnica of Valencia 

[25]. 

4.6 TIME SERIES ANALYSIS 

4.6.1 Basic definitions  
With reference to a nuclear reactor, it is important to determine whether 

the actual operating conditions are inside the stable region (see Chapter 2). In 

order to study the reactor stability, the neutronic power signals obtained from 

APRM and LPRM can be used to determine the Decay Ratio.  

The Decay Ratio (DR) is a fundamental quantity in a BWR stability 

analysis and is defined as the ratio of two consecutive maxima of the impulse 

response. 
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Although the neutron noise cannot be fitted with continuous second order 

system, the DR definition coming from such a system is given first (section 

4.5.1.1) Alternative approaches imply the consideration that the neutron power 

signals can be considered as time series. 

The value of the signal at instant tn is denoted hereafter as by �(n). To 

study the time series, these are supposed stationary, that is, the main statistical 

properties of the series remain constant over time. Also, the value of the observed 

series are assumed as linear combinations of present and past values of the series, 

and a parametric model can be used to fit their behaviour. 

The Decay Ratio parameter is calculated for each of these time series. 

Basically, two kinds of methods for extracting the DR from neutronic signals are 

common use, those based on the autocorrelation function (ACF) of the signal and 

the ones based on the impulse response function (IRF), obtained using a 

parametric model to fit the behaviour of the system. 

4.6.1.1 Analytical definition of DR 
If the system that models the signals is a second-order oscillator of the 

form 

 

02 2 =++ xxx ωα���  (4.17) 

 

the general solution for the system is  

 

))(cos()( 22 ϕαωα +−= − tAetx t  (4.18) 

 

The DR parameter gives us a measurement of the damping of the system 

and it is defined as the ratio between two consecutive maxima of the signal. For 

the second-order system this parameter is a constant, and is given by  
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As already mentioned the neutron noise cannot be fitted with a continuous 

second order system. Consequently the above defined DR should not be 

considered as a constant. This method it is not used for deriving the value below. 

4.6.1.2 Autocorrelation function 
The autocorrelation function of a process as the considered one, is defined 

as the following limit 
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In practice as a finite number of points for the signal are available, the 

autocorrelation sequence is rarely known, and must be estimated with the 

available finite data records. Assuming N data samples, a discrete-time 

autocorrelation estimate is for the signal x(n): 
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The discrete sequence )(ˆ mrxx  forms unbiased estimates of the true 

autocorrelation function, because it is satisfied that the expected value of the 

estimator gives the different points of the autocorrelation 

function [ ] )()(ˆ mrmrE xxxx = . 

4.6.1.3 Parametric model 
An autoregressive moving-average model for a stationary process, can be 

defined as 
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where x(n) can be seen as the output sequence of a causal filter (hj=0 for j<0) that 

models the observed data, hj is the discrete impulse response function of the 

system, u(n) is a noise process with zero-mean and constant variance (white noise 

process) and a(k) and b(k) are the autoregressive (AR) and moving-average (MA) 

parameters, respectively. The notation ARMA(p,q) is used to indicate an ARMA 

model with p autoregressive parameters and q moving-average ones. 

If all the autoregressive parameters are zero, then equation (4.23) can be 

written as 
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This equation represents a moving-average process of order q, MA(q). 

And if all the moving-average parameters are zero, except b(0)=I, equation (4.23) 

can be expressed as  
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that represents an autoregressive process of order p, AR(p). 

Considering the Z-transform of equation (4.23), it is obtained 

 

)()()( zUzHzX ARMA=  (4.24) 

 

where X(z) and U(z) are the Z-transform of x(n) and u(n), respectively, and the 

transfer function of the system is given by  
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and if we denote by  �j (j=1,….,p) the p simple poles of the transfer function and 

by �j (j=1,….,q) the q simple zeros, (4.25) can be written as  
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where the weights wj are given by 
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If the above results are introduced in an AR (p) model, the transfer 

function of the system is  
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where now, the weights are given by  
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The impulse response function of the system is given by 
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To approximate the signals behaviour by means of a parametric model, the 

orders of the ARMA model are supposed to be known. Thus, to determine the 

model order constitutes a previous problem to obtain an adequate model for the 

signal. 

To obtain the model order, the Akaikes’s Final Prediction Error Criterion 

(FPE) is used. This criterion for a general ARMA(p,q) model, is given by: 
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kn
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where n=N-p, being N the number of sampled data in a series, k=p+q+1, and ρ̂  

is the residual variance of the process. The basis of the criterion is to use the 

couple of orders (p,q) at which, the FPE attains its minimum. 

4.6.2 Definitions of the Decay Ratio 
Other than the analytical definition already given, the DR definitions, 

presented hereafter, can be used and are used in practical applications. 

4.6.2.1 Standard method (DR1 and DR2) 
This method proposes two ways of calculating the Decay Ratio. The first 

one, based on the autocorrelation function (ACF) and the second one, based on 

the impulse response function (IRF) calculated using an autoregressive moving-

average model (ARMA (p,q)) or an autoregressive model (AR(p)) to fit the 

behaviour of the system. Once the ACF and IRF have been obtained, for a second 

order system, the DR would be defined as the ratio of two consecutive maxima of 

these functions (see figure 4.7).  
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Figure 4.7:Definition of the DR  
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As a reactor is not strictly a second order system, this definition of DR 

gives not a constant for the system and so, it is needed to use a new definition of 

the DR to improve the results. For the first three maxima of the function, the 

quotients are calculated 
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DR 11 += , (i=1,2)  (4.33) 

 

and the DR parameters of the system, DR1, is defined as the mean value of DR11 

and DR12. 

To avoid any disturbance of either the ACF or the IRF, due the influence 

of the parasitic noise or the time series finiteness, an alternative definition, is 

considered. For the first three minima of the function, the quotients are calculated 
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and the DR parameter of the system, DR2, is defined as the mean value of DR21 

and DR22. In order to obtain the points Bi, the following steps are considered. The 

first four maxima of the ACF or the IRF denoted by (xMi, yMi) are identified. Once 

these points are obtained, they are fitted with a cubic polynomial that, using the 

Lagrange Interpolating Polynomial formula, can be expressed as 
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After this, the first three minima of the ACF of the IRF are identified (xmi, 

ymi); the image points, P(xmi), of the fitted polynomial can be characterized, and 

thus, the Bi are given by   

 

mimii yxPB += )(  (4.36) 

4.6.2.2 AR-Lyapunov approximation (DR3) 
It is known that instabilities take place when two biggest Lyapunov 

exponents of the system approach simultaneously to zero, which is equivalent to 

say that the real part of a pair of complex conjugate eigenvalues of the Jacobian 

matrix of the system approach to zero [26]. 

It is assumed that the reactor behaviour can be fitted with a second order 

model with transfer function of the form  
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1

)( *γγ −−
=

ss
sH  (4.37) 

 

where � is the dominant pole of the system and �* is its complex conjugate in the 

continuous s-plane. 

To obtain this dominant pole, the dominant pole of the transfer function 

associated to the parametric model of the signal, �, is considered; this is defined as 

the system pole with the biggest weight. 
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Once, it has been determined, it is transformed to the continuous s-plane 

using the relation with the discrete z-plane, z=exp(sT). Thus, the dominant pole in 

the continuous plane can be written as  

 

)Im()Re(
)log( γγβγ i

T
+==  (4.38) 

 

and the continuous impulse response of the system is given by 
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The system oscillation period can be calculated from the imaginary part of 

� and is given by  
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ϕ
π=L  (4.40) 

 

And the DR parameter, defined as the quotient between the amplitude of 

two points separated by L, has the form 

 

)Im(
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3 γ
πγ

eDR =  (4.41) 

4.6.2.3 ARMA-AR model (DR4) 
An alternative method to calculate the Decay Ratio, is based on the 

impulse response obtained from parametric models of the system, either 

autoregressive or autoregressive moving-average ones [27]. Once the IRF is 

available, using the expression 
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the DR can be calculated as the quotient between two consecutive maxima of the 

impulse response: 

 

j

jL
j h

h
DR +=  (4.43) 

 

where j is the instant corresponding to the maximum of the function and L 

represents the ‘lag’, or length between two consecutive maxima. Approximating 

the behaviour of the system by a continuous second order model, L is given by 

(4.40), where � is the dominant pole of the transfer function in the continuous s-

plane. Using this method, consecutive quotients of the impulse response function 

in points separated by a ‘lag’ L are taken. Since an asymptotic value is achieved, 

this value is associated with the Decay Ratio parameter DR4. 

4.6.3 Decay Ratio calculations 
The results of a computational or experimental BWR system analysis 

relating to the stability behaviour of this dynamical system are time series of local 

and global reactor parameters, particularly of the local in-core monitoring: LPRM 

and APRM. 

The task is to analyze the predicted or measured APRM and LPRM time 

series generated by an arbitrary reactor perturbation. The analysis involves the 

calculation of the stability characteristic (e.g. DR) from the power time series and 

possibly other parameter time series. 

 


