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Abstract

Nowadays the automotive environment is more and more characterized by
several IT applications: from infotainment systems to C2C (Car to Car) or
C2X (Car to external) solutions, as LTE or Wi-Fi connections. This, together
with engine and other components controls systems, reflects on many
different internal and external networks, which can be found inside a car.

Carmakers are going in the direction of replacing much of these networks by
Ethernet networks, to achieve more throughput in order to satisfy clients’

expectations.

This work is placed in the context of the deployment of a security module for
the automotive requirements compatible with the Ethernet standard,
managed by the security team of Renesas Electronics Europe GmbH, one of
the world’s biggest microcontrollers manufacturer.

After a deep analysis of the main degrees of freedom in the project
workspace, a hardware component has been implemented, which acts as
accelerator for encryption keys generation, compliant with the MKA Key
Hierarchy protocol in the 802.1X-2010 standard.

A testing phase has followed to validate the implemented MKA KH core by an
algorithmic point of view: for this purpose, with the help of the official National
Institute of Standards and Technology (NIST) test vectors, a Java software
has been realized, which generates the required encryption keys compliant
with the MKA KH algorithm.

Then the compliancy with respect to the IEEE 802.1AE standard and the full
integration inside the MAC IP has been verified.
The realized system has been synthesized both on a FPGA Stratix V of

Altera and on a 65nm standard-cell ASIC technology: the system shows an
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occupation of 9938 registers and 11477 ALMs on the FPGA and
102,38kgates on the standard-cell technology. The maximum reachable
throughput at 125MHz is 1Gbps.
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1. Security in automotive

1.1. Introduction

With the following dissertation | would like to focus on IT security, in particular
on security related to the automotive field. Over the last two decades vehicles
have silently but dramatically changed into mobile interactive systems already
carrying dozens of digital microprocessors, various external radio interfaces,
and several hundred megabytes of embedded software. In fact, information
and communication technology is the driving force behind most innovations in
the automotive industry, with perhaps 90% of all innovations in vehicles

based on digital IT systems.

Todays in-vehicle IT architectures are dominated by a large network of
interactive, software driven digital microprocessors called electronic control
units (ECU). However, ECUs relying on information received from open
communication channels created by other ECUs or even other vehicles that
are not under its control, leaves the doors wide open for manipulations or
misuse.
Future cars will become even more dependent on IT security due to the
following developments:
« It is predicted that an increasing number of ECUs (electronic control
units) will be reprogrammable, a process that must be protected.
« Many cars will communicate with the environment in a wireless fashion,
which makes strong security a necessity.
 New business models (e.g., time-limited flash images or pay-per-use
infotainment content) will become possible for the car industry, but will

only be successful if abuse can be prevented.



« There will be an increasing number of legislative demands which can
only be solved by means of modern IT security functions, such as
tamper- resistant tachographs, secure emergency call functions, secure
road billing etc.

* Increasing networking of cars will allow the collection of data for each
driver (e.g., driving behavior, locations visited), which will put high
demands on privacy technology.

* Future cars will often be personalized, which requires a secure
identification of the driver.

» Electronic anti-theft measures will go beyond current immobilizers, e.g.,
by protecting individual components.

...and many others...

Automotive ECUs Controllers by 2020

= Between 25 and 100 individual ECUs
= With distributed sensors and motor controllers.

In Vehicle Infotainment Gateways Body Electronics

Audio Visual, Maps, Traffic, GSM 3G 4G LTE Heating, Ventilation, AC, Lighting,
Mobile phone SIM, Toll payment, WiFi, Bluetooth Electric seat, Windows, Mirrors,
Google services CAN, LIN, Flexray, TTP Cameras, Seat belt, Air bag,

Seat back display Comfort, Convenience

Dashboard
Instrument display surface, Connected Car
Head-up display, IVI display Car to car, Crash alert,
- ! Service, comms, maps
Insurers’ black box

v2X
Vehicle-to-Vehicle g & c s
Vehicle-to-Infrastructure Y \ Hybrid Electric
; Vehicle
Battery management
Advanced Driver Motor control

Assistance System

Radar / image processing,

Collision avoidance, Pre-crash, Powertrain Chassis

Cruise control, Lane Engine Control Unit, Braking, Steering, Stability
departure, Parking Sensors, Gearbox ABS, VSC, EPS

Figure 1 — Automotive ECUs Controllers by 2020



This “digital revolution” enables very sophisticated solutions considerably
increasing flexibility, safety and efficiency of modern vehicles. It further helps
saving fuel, weight, and costs.

Whereas in-vehicle IT safety (i.e., protection against [random] technical
failures) is already a relatively well-established (if not necessarily well-
understood) field, the protection of vehicular IT systems against systematic
manipulations has only very recently started to emerge. In fact, automotive IT
systems were never designed with security in mind. But with the increasing
application of digital software and various radio interfaces to the outside world
(including the Internet), modern vehicles are becoming even more vulnerable
to all kinds of malicious encroachments like hackers or malware. This is
especially noteworthy, since in contrast to most other IT systems, a
successful malicious encroachment on a vehicle will not only endanger
critical services or business models, but can also endanger human lives.
Thus strong security measures should be mandatory when developing
vehicular IT systems. Today most vehicle manufacturer (hopefully)
incorporates security as a design requirement. However, realizing
dependable IT security solutions in a vehicular environment considerably
differs from realizing IT security for typical desktop or server environments. In
a typical vehicular attack scenario an attacker, for instance, has extended
attack possibilities (i.e., insider attacks, offline attacks, physical attacks) and
could have many different attack incentives and attack points (e.g.,
tachometer manipulations by the vehicle owner vs. theft of the vehicle

components vs. industrial espionage).

1.2 How secure is your car?

In a talk at the Black Hat security conference in Las Vegas [, Charlie Miller

and Chris Valasek presented the results of a broad analysis of dozens of



different car makes and models, assessing the vehicles’ schematics for the
signs that hint at vulnerabilities to auto-focused hackers. The result is a kind
of handbook of ratings and reviews of automobiles for the potential
hackability of their networked components.

They examined how a remote attack might work on 24 different cars.

“It really depends on the architecture: If you hack the radio, can you send
messages to the brakes or the steering? And if you can, what can you do with
them?” said Valasek, director of vehicle security research at the security

consultancy IOActive.

In the two researchers’ analysis, three vehicles were ranked as “most
hackable”: the 2014 models of the Infiniti Q50 and Jeep Cherokee and the
2015 model of the Cadillac Escalade. The full results, summarized in the
chart below, show that the 2010 and 2014 Toyota Prius didn’t fare well either.



2014 Audi A8 ++ -- +
2014 Honda = + +
Accord LX

2014 Infiniti -+ + +
Q50

2010 Infiniti G37 | -
2014 Jeep ++
Cherokee

2014 Dodge ++ ++

Ram 3500

2014 Chrysler ++ - ++
300

2014 Dodge ++

Viper

2015 Cadillac ++ + +
Escalade

2006 Ford

Fusion

2014 Ford ++ - ++
Fusion

2014 BMW 3 ++ - +
series

2014 BMW X3 ++ -- ++
2014 BMW i12 -+ - +
2014 Range ++ - ++
Rover Evoque

2010 Range

Rover Sport

2006 Range - --

Rover Sport

2014 Toyota + + ++
Prius

2010 Toyota + + ++
Prius

2006 Toyota

Prius

¥t

++

Figure 2 - Hackablity results: A plus sign represents “more hackable,” a minus sign “less hackable.”

All the cars’ ratings were based on three factors: the first was the size of their
wireless “attack surface”—features like Bluetooth, Wi-Fi, cellular network
connections, keyless entry systems, and even radio-readable tire pressure
monitoring systems. Any of those radio connections could potentially be used
by a hacker to find a security vulnerability and gain an initial foothold onto a
car's network. Second, they examined the vehicles’ network architecture, how
much access those possible footholds offered to more critical systems
steering and brakes. And third, Miller and Valasek assessed what they call

the cars’ “cyberphysical” features: capabilities like automated braking, parking



and lane assist that could transform a few spoofed digital commands into an
actual out-of-control car.

Miller and Valasek say that within the Infinity Q50’s network, those radio and
telematic components were directly connected to engine and braking
systems. And the sedan’s critical driving systems had computer-controlled
features like adaptive cruise control and adaptive steering that a hacker could
potentially hijack to physically manipulate the car.

The researchers pointed to Audi’s A8, by contrast, as an example of a strong
network layout. Its wireless features were separated from its driving functions
on its internal network, with a gateway that would block commands sent to

steering or brakes from any compromised radios.

1.3. Ethernet backbone in cars

In the late period we are moving in the direction where proprietary
technologies in the automotive field, especially in transmission’s physical

layer, will be replaced with standard ones.

My thesis has been developed in cooperation with Renesas Electronics
Corporation, one of the world's largest makers of semiconductor systems for

mobile phones and automotive applications.

Starting from leading chip companies as Broadcom and Renesas, they think
carmakers are coming around at last to the wisdom of leveraging standard

technologies such as Ethernet, already well proven outside the car market'.

Carmakers nowadays, and | would say people in general, are paying more
attention to electronic devices and the innovation they are carrying with,

instead of a car's horsepower. They need to make sure their cars can



accommodate everything, from a navigation system to displays and other
gadgets that consumers use inside a car. And this is true not only for high-

level cars.

Inside a car today there are many independents networks. Each automotive
network technology such as low-voltage differential signaling (LVDS), media-
oriented systems transport (MOST), and the controller area network (CAN), is
connected to different electronics. They don't interoperate. We think Ethernet

will replace these networks in some years.

Think about our smartphones, tablets and notebooks; our quality
expectations are higher and higher. Would we be satisfied with a delay
suffering black/white low-resolution rear camera in our car? And it's quite
normal today to think about LTE networks inside cars. That's why the
bandwidth needed for in-car networking grows exponentially. And scalability
is another important feature carmakers are interested in; in fact they are
increasingly looking to OPEN Alliance SIG, an open industry consortium
designed to encourage wide-scale adoption of Ethernet-based networks as
the standard in automotive networking applications, partner of Renesas as

well.



AV entertainment

Device integration

OBDX CAN & Ethernet/IP Ethernet/IP

Figure 3 - In-Car Networking Scenario

As we can see from Figure 3 the expectations in the next few years are about
Ethernet to coexist with low-bandwidth standards like CAN.

The backbone however will be Ethernet-driven. The CAN, MOST, LIN and
others will continue to exist on a small-scale basis, but Ethernet will drive the
majority of the work. We need a security solution to protect Ethernet
connections inside the car environment.

After a general overview of cryptography and encryption algorithms, in Sec. 2

| will deal with MACsec, a security protocol for Ethernet networks.



2. Automotive and cryptography

Even though security depends on much more than just cryptographic
algorithms — a robust overall security design including secure protocols and
organizational measures are needed as well — crypto schemes are in most
cases the atomic building blocks of a security solution. The problem in
embedded applications is that they tend to be computationally and memory
constrained due to cost reasons. (Often they are also power limited, but,
since automotive applications are often powered by their own battery, low-
power crypto is not such an important topic in the car context).

So the main goal is to implement secure crypto algorithms on small devices

at acceptable running times.

Crypto schemes are divided into two families: symmetric and asymmetric
algorithms. The first group is mainly used for data encryption and message
integrity checks. Symmetric algorithms tend to run relatively fast and often
need little memory resources. There exists a wealth of established
algorithms, with the most prominent representatives being the block ciphers
DES (Data Encryption Standard) and AES (Advanced Encryption Standard).
The family of stream ciphers, as we will see later, can be even more efficient
than block ciphers and are, thus, sometimes preferred for embedded
applications. In almost all cases it is a wise choice to use established, proven

algorithms rather than unproven or self-developed ones.



(v’

key

plaintext

ciphertext plaintext

key

Figure 4 - Symmetric vs Asymmetric Cryptography

The second family of schemes, asymmetric or public-key algorithms, is very
different. They are based on hard number theoretical problems and involve
complex mathematical computations with very long numbers, commonly in
the range of 160—4048 bits, depending on the algorithm and security level.
Their advantage, however, is that they offer advanced functions such as
digital signatures and key distribution over unsecure channels. For common
automotive applications such as secure flashing, public-key algorithms are
often preferred. The problem here is the computational requirement of public-
key schemes. Embedded processors in the automotive domain are often only
equipped with 8-bit and 16-bit processors clocked at moderate frequencies
of, say, below 10 MHz. Running computationally expensive public-key
algorithms on such processors can result in unacceptably long execution
times, for instance several seconds for the generation of a digital signature.
For this reason, it is very important that a smart parameter choice together

with the latest implementation techniques are being employed.
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21. Symmetric Cryptography

Symmetric-key algorithms are algorithms for cryptography that use the same
cryptographic keys for both encryption of plaintext and decryption of
ciphertext. The keys may be identical or there may be a simple

transformation to go between the two keys.

VpEP,k€EK:Dk,E(k,p))=p

Figure 5 - Symmetric Key formal definition

In Figure 5 we can see the characterized equation of the symmetric
cryptography, where p is the plaintext belonging to the plaintext space P, c is
the ciphertext belonging to the ciphertext space C and k is the shared secret

key belonging to the key space K.

The keys, in practice, represent a shared secret between two or more parties
that can be used to maintain a private information link. This requirement that
both parties have access to the secret key is one of the main drawbacks of

symmetric key encryption, in comparison to public-key encryption.

2.2, Operation modes

Symmetric cryptography can be implemented using either Stream ciphers or

Block ciphers.
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2.21. Stream ciphers

With stream ciphers plaintext digits are combined with a pseudorandom
cipher digit stream (keystream). In a stream cipher each plaintext digit is
encrypted one at a time with the corresponding digit of the keystream, to give

a digit of the ciphertext stream.

Small Small
random key random key
Stream cipher Stream cipher
Keystream Keystream
(pseudo-random string) (pseudo-random string)

Plaintext l Ciphertext l Plaintext
() HE—*

Figure 5 - Stream cipher general schema

2.2.2. Block ciphers

Block ciphers can operate into different modes:
* ECB (Electronic CodeBook)
* CBC (Cipher Block Chaining)
* CFB (Cipher FeedBack)
* OFB (Output FeedBack)
* CTR (Counter)

In the following sections all these modes are described in detail ™.

12



2.2.2.1. ECB - Electronic CodeBook

The Electronic Codebook (ECB) mode is a confidentiality mode that features,
for a given key, the assignment of a fixed ciphertext block to each plaintext
block, analogous to the assignment of code words in a codebook. The

Electronic Codebook (ECB) mode is defined as follows:

Figure 6 - ECB mode schema

C, =E(F)
F,=D,(C)

Figure 7 - ECB equations

In ECB encryption and ECB decryption, multiple forward cipher functions and

inverse cipher functions can be computed in parallel.
In ECB redundancies can be present, since same plaintext blocks will have
the same ciphertext. This will bring the algorithm subjected to attacks of

cryptanalysis.
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With ECB we don’t have error propagation, i.e. if one block is received

corrupted no other block will suffer for the error.

2.2.2.2. CBC - Cipher Block Chaining

The Cipher Block Chaining (CBC) mode is a confidentiality mode whose
encryption process features the combining (“chaining”) of the plaintext blocks
with the previous ciphertext blocks. The CBC mode requires an IV to combine
with the first plaintext block (Figure 9). The IV need not be secret, but it must

be unpredictable. Also, the integrity of the IV should be protected. The CBC
mode is defined as follows:

\Y P, 5\2 C, C,
¥ v v
\Y S
+ + Y \
Cl C2 1 PZ
Encryption Decryption

Figure 8 - CBC mode schema

rCi =Ek(Pi @Ci—l)
Pi =Ci—1®Dk(Ci)
Co =]V

I\

"

Figure 9 - CBC equations
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In CBC encryption, the first input block is formed by exclusive-ORing the first
block of the plaintext with the IV. The forward cipher function is applied to the
first input block, and the resulting output block is the first block of the
ciphertext. This output block is also exclusive-ORed with the second plaintext
data block to produce the second input block, and the forward cipher function
is applied to produce the second output block. This output block, which is the
second ciphertext block, is exclusive-ORed with the next plaintext block to
form the next input block. Each successive plaintext block is exclusive-ORed
with the previous output/ciphertext block to produce the new input block. The
forward cipher function is applied to each input block to produce the
ciphertext block.

In CBC decryption, the inverse cipher function is applied to the first ciphertext
block, and the resulting output block is exclusive-ORed with the initialization
vector to recover the first plaintext block. The inverse cipher function is also
applied to the second ciphertext block, and the resulting output block is
exclusive-ORed with the first ciphertext block to recover the second plaintext
block. In general, to recover any plaintext block (except the first), the inverse
cipher function is applied to the corresponding ciphertext block, and the
resulting block is exclusive-ORed with the previous ciphertext block.

In CBC encryption, the input block to each forward cipher operation (except
the first) depends on the result of the previous forward cipher operation, so
the forward cipher operations cannot be performed in parallel. In CBC
decryption, however, the input blocks for the inverse cipher function, i.e., the
ciphertext blocks, are immediately available, so that multiple inverse cipher

operations can be performed in parallel.
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2.2.2.3. CFB - Cipher FeedBack

The Cipher Feedback (CFB) mode is a confidentiality mode that features the
feedback of successive ciphertext segments into the input blocks of the
forward cipher to generate output blocks that are exclusive-ORed with the
plaintext to produce the ciphertext, and vice versa. The CFB mode requires
an IV as the initial input block. The IV need not be secret, but it must be
unpredictable.

The CFB mode also requires an integer parameter, denoted s, such that1 <s
< b. In the specification of the CFB mode below, each plaintext segment (P#j
and ciphertext segment (C#j) consists of s bits. The value of s is sometimes
incorporated into the name of the mode, e.g., the 1-bit CFB mode, the 8-bit
CFB mode, the 64-bit CFB mode, or the 128-bit CFB mode.

The CFB mode is defined as follows:

(1, =1V
Ij = LSBb_s (Ij_1) | C?—l Forj=2...n
< O.=E.U)) Forj=1,2...n
# # Forj=1,2...n
\CJ' - Pj C_DMSBs(O])

Figure 10 - CFB Encryption

(1, =1V
I] = LSBb—s (IJ_]) | C?‘—l F01’j=2...n
<0].=EK(I],) Forj=1,2...n
# # Forj=1,2...n
P;=C;®MSB,(0))

Figure 11 - CFB Decryption
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In CFB encryption, the first input block is the IV, and the forward cipher
operation is applied to the IV to produce the first output block. The first
ciphertext segment is produced by exclusive-ORing the first plaintext
segment with the s most significant bits of the first output block. (The
remaining b-s bits of the first output block are discarded.) The b-s least
significant bits of the IV are then concatenated with the s bits of the first
ciphertext segment to form the second input block. An alternative description
of the formation of the second input block is that the bits of the first input
block circularly shift s positions to the left, and then the ciphertext segment
replaces the s least significant bits of the result.

The process is repeated with the successive input blocks until a ciphertext
segment is produced from every plaintext segment. In general, each
successive input block is enciphered to produce an output block. The s most
significant bits of each output block are exclusive-ORed with the
corresponding plaintext segment to form a ciphertext segment. Each
ciphertext segment (except the last one) is “fed back” into the previous input
block, as described above, to form a new input block. The feedback can be
described in terms of the individual bits in the strings as follows: if isi,...i, is
the /" input block, and c;c,...cs is the /" ciphertext segment, then the (j+1)"

input block is is+1ls+2...Ip C1C5...Cs.

The CFB mode is illustrated in Figure 12.
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Figure 12 - CFB Mode

In CFB decryption, the IV is the first input block, and each successive input
block is formed as in CFB encryption, by concatenating the b-s least
significant bits of the previous input block with the s most significant bits of
the previous ciphertext. The forward cipher function is applied to each input
block to produce the output blocks. The s most significant bits of the output
blocks are exclusive-ORed with the corresponding ciphertext segments to
recover the plaintext segments.

In CFB encryption, like CBC encryption, the input block to each forward
cipher function (except the first) depends on the result of the previous forward
cipher function; therefore, multiple forward cipher operations cannot be

performed in parallel. In CFB decryption, the required forward cipher
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operations can be performed in parallel if the input blocks are first

constructed (in series) from the IV and the ciphertext.

2.2.2.4. OFB - Output FeedBack

The Output Feedback (OFB) mode is a confidentiality mode that features the
iteration of the forward cipher on an IV to generate a sequence of output
blocks that are exclusive-ORed with the plaintext to produce the ciphertext,
and vice versa. The OFB mode requires that the IV is a nonce, i.e., the IV
must be unique for each execution of the mode under the given key; the

generation of such Vs is discussed in Appendix C. The OFB mode is defined

as follows:
1,=1v
Ij = 0j_1 For j=2...n
10, =E.()) Forj=1,2...n
For j=1,2...n-1
Cj = Pj @ 0]-
C, =P, ®MSB,0,)

Figure 13 - OFB Encryption
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r

I =1v

Ij = Oj_l For j=2...n
3 Oj = EK(Ij) Forj=1,2...n
Forj=1,2...n-1
P;=C,®0,

P, =C,®MSB,(0,)

Figure 14 - OFB Decryption

In OFB encryption, the IV is transformed by the forward cipher function to
produce the first output block. The first output block is exclusive-ORed with
the first plaintext block to produce the first ciphertext block. The forward
cipher function is then invoked on the first output block to produce the second
output block. The second output block is exclusive-ORed with the second
plaintext block to produce the second ciphertext block, and the forward cipher
function is invoked on the second output block to produce the third output
block. Thus, the successive output blocks are produced from applying the
forward cipher function to the previous output blocks, and the output blocks
are exclusive-ORed with the corresponding plaintext blocks to produce the
ciphertext blocks. For the last block, which may be a partial block of u bits,
the most significant u bits of the last output block are used for the exclusive-

OR operation; the remaining b-u bits of the last output block are discarded.
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Figure 15 - OFB Mode

In OFB decryption, the IV is transformed by the forward cipher function to
produce the first output block. The first output block is exclusive-ORed with
the first ciphertext block to recover the first plaintext block. The first output
block is then transformed by the forward cipher function to produce the
second output block. The second output block is exclusive-ORed with the
second ciphertext block to produce the second plaintext block, and the
second output block is also transformed by the forward cipher function to
produce the third output block. Thus, the successive output blocks are
produced from applying the forward cipher function to the previous output
blocks, and the output blocks are exclusive-ORed with the corresponding
ciphertext blocks to recover the plaintext blocks. For the last block, which

may be a partial block of u bits, the most significant u bits of the last output
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block are used for the exclusive-OR operation; the remaining b-u bits of the
last output block are discarded.

In both OFB encryption and OFB decryption, each forward cipher function
(except the first) depends on the results of the previous forward cipher
function; therefore, multiple forward cipher functions cannot be performed in
parallel. However, if the IV is known, the output blocks can be generated prior
to the availability of the plaintext or ciphertext data.

The OFB mode requires a unique IV for every message that is ever
encrypted under the given key. If, contrary to this requirement, the same IV is
used for the encryption of more than one message, then the confidentiality of
those messages may be compromised. In particular, if a plaintext block of
any of these messages is known, say, the " plaintext block, then the j"
output of the forward cipher function can be determined easily from the "
ciphertext block of the message. This information allows the j" plaintext block
of any other message that is encrypted using the same IV to be easily
recovered from the j ciphertext block of that message.

Confidentiality may similarly be compromised if any of the input blocks to the
forward cipher function for the encryption of a message is designated as the
IV for the encryption of another message under the given key.

The OFB mode is illustrated in Figure 15.

2.2.2.5. CTR - Counter

The Counter (CTR) mode is a confidentiality mode that features the
application of the forward cipher to a set of input blocks, called counters, to
produce a sequence of output blocks that are exclusive-ORed with the
plaintext to produce the ciphertext, and vice versa. The sequence of counters
must have the property that each block in the sequence is different from

every other block. This condition is not restricted to a single message: across
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all of the messages that are encrypted under the given key, all of the
counters must be distinct. In this recommendation, the counters for a given
message are denoted T4, T,, ..., T,. Given a sequence of counters, T;, T, ...

, Tn, the CTR mode is defined as follows:

rOj = EK(T]) Forj=1,2...n
Forj=1,2...n-1

1C,=P,®O0, ory=l.2...n

C,=P,®MSB,O0,)

Figure 16 - CTR Encryption

O, =E.(T) Forj=1,2...n
For j=1,2...n-1
1£,=¢,®0;
P,=C,®MSB,O0,)

Figure 17 - CTR Decryption

In CTR encryption, the forward cipher function is invoked on each counter
block, and the resulting output blocks are exclusive-ORed with the
corresponding plaintext blocks to produce the ciphertext blocks. For the last
block, which may be a partial block of u bits, the most significant u bits of the
last output block are used for the exclusive-OR operation; the remaining b-u
bits of the last output block are discarded.

In CTR decryption, the forward cipher function is invoked on each counter
block, and the resulting output blocks are exclusive-ORed with the
corresponding ciphertext blocks to recover the plaintext blocks. For the last

block, which may be a partial block of u bits, the most significant u bits of the
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last output block are used for the exclusive-OR operation; the remaining b-u
bits of the last output block are discarded.

In both CTR encryption and CTR decryption, the forward cipher functions can
be performed in parallel; similarly, the plaintext block that corresponds to any
particular ciphertext block can be recovered independently from the other
plaintext blocks if the corresponding counter block can be determined.
Moreover, the forward cipher functions can be applied to the counters prior to
the availability of the plaintext or ciphertext data.

CTR mode is illustrated in Figure 18.
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Figure 18 - CTR Mode
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2.2.3. Stream vs Block Ciphers

Stream ciphers are typically faster than block, but that has it's own price.
Block ciphers typically require more memory, since they work on larger
chunks of data and often have "carry over" from previous blocks, whereas
since stream ciphers work on only a few bits at a time they have relatively low
memory requirements (and therefore cheaper to implement in limited
scenarios such as embedded devices, firmware, and esp. hardware).

Stream ciphers are more difficult to implement correctly, and prone to

weaknesses based on usage and the keystream has very strict requirements.

Because block ciphers encrypt a whole block at a time (and furthermore have
"feedback" modes which are most recommended), they are more susceptible
to noise in transmission, that is if you mess up one part of the data, all the
rest is probably unrecoverable. Whereas with stream ciphers bytes are
individually encrypted with no connection to other chunks of data (in most
ciphers/modes), and often have support for interruptions on the line.

Also, stream ciphers do not provide integrity protection or authentication,
whereas some block ciphers (depending on mode) can provide integrity

protection, in addition to confidentiality.

Because of all the above, stream ciphers are usually best for cases where the
amount of data is either unknown, or continuous - such as network streams.
Block ciphers, on the other hand, or more useful when the amount of data is
pre-known - such as a file, data fields, or request/response protocols, such as
HTTP where the length of the total message is known already at the
beginning.

This is the main reason why choosing the encryption algorithm we came up

with a symmetric block cipher one.
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2.3. Possible attacks

The idea of security comes from the need to protect data against malicious
users and relative attacks. Depending on the chosen algorithm, some of

these attacks can be successful or not.

In general the following types of attacks are valid under these hypothesis:
* The adversary has access to all encrypted messages.
» Kerckhoff Hypothesis: the adversary knows all the details of the

encryption function but the secret key.

Here we have a list of possible attacks; they refer to what the malicious user
is in posses during the attack.
Types of attacks:
* Ciphertext-only attack: he (the adversary) has access to the ciphertext
only.
* Known-plaintext attack: he has the ciphertext and the message in clear,
and he’s able to combine them in pairs.
* Chosen-plaintext attack: he can obtain the ciphertexts for arbitrary

plaintexts.

The previous types of attacks characterize all the so-called force brute

attacks.

2.3.1. Exhaustive key search

Exhaustive key search is an example of known-plaintext attack, that can

become a ciphertext-only attack if we have redundancies in the plain text.

26



The adversary has ( p, ¢ ) pairs and he has to find the key that generates ¢
from p.

Since the key is on k bit we have 2¢ possible keys. The exhaustive key
search tells the user to try all the possible keys to check which one can
encrypt the message p on the ciphertext c. The main issue in this approach is
the presence of false positive keys: different keys can encrypt the same
message p into the same ciphertext ¢, so the found key can be the correct

one for the given message but not for all the others.

The number of pairs ( p, ¢ ) that we need to avoid false positives is:

k+4

n

J =

Figure 19 - number of pairs to avoid false positive

where k is the key’s number of bits and n is the number of bits of the

message.

2.3.2. Data exhaustive analysis

Data exhaustive analysis, also called dictionary attack, is a known-plaintext
attack. The adversary builds up a table with enough pair ( pi, ci ) to reuse
them later to decrypt similar encrypted messages. Longer the ciphertext are

harder to acquire all the needed pairs will be.

27



2.3.3. Cryptanalysis

Besides force brute attacks we have also cryptanalysis algorithms, which can
be divided in:

* Linear Cryptanalysis (LC): used for block and stream ciphers.

» Differential Cryptanalysis (DC): used for block and stream ciphers and

hash functions.

24, Computational security

The encryption algorithm is said to be computationally secure if the best

attack is too complex for the adversary.

The attack complexity can be divided in:
* Data Complexity
» Storage Complexity

* Processing Complexity

A security schema is computationally secure to the previous described force

brute attacks if:

* The key k is big enough (>64 bit), to avoid exhaustive key search.
* The messages’ length is big enough (>64 bit), to avoid data exhaustive

analysis.

2.5. Attacks in automotive systems

To prevent cyber attacks on vehicles, security solutions must be designed for

automotive systems. There exist, however, a number of fundamental
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limitations when designing such solutions. First, the ECUs inside the vehicles
have limitations in computational power, memory, bandwidth, and power
consumption. Second, the ECUs operate in a real-time environment where
queuing of messages and delays are not tolerated. The data received from
sensors on a vehicle must be processed in real-time, and decisions to affect
the correct actuators must be made with no imposed delay. The design of
security solutions must take the real-time constraint into consideration. Third,
the traffic patterns for vehicular communication differ from traffic patterns in
traditional IP networks. For example, data on the CAN bus in the in-vehicle
network is broadcast. Vehicular ad hoc networks could be formed
spontaneously in vehicle-to-vehicle and vehicle-to-roadside communication.
In addition, automotive manufacturers could establish vehicle-to-infrastructure
environments for performing wireless diagnostics and firmware updates on
vehicles. The different traffic patterns and communication models require
different solutions. Thus, traditional solutions developed for IP networks
cannot be used.

The three most important research challenges for providing security solutions
for automotive systems are described as follows. The vehicle allows
interaction with the physical world, such as receiving warning signals from
other vehicles or intersections and crossings. As a consequence, cyber
attacks that simulate the physical world will most likely occur. Thus, a
challenge is to verify the authenticity of incoming data to a vehicle. For
example, a vehicle must assure that the received warning is correct and fresh
(no replay) and that it was sent from the correct physical entity (e.g., vehicle
or intersection).

While authenticating that incoming data is correct is one challenge, protecting
the listening interface from intrusions is another. Since the wireless interface
is a listening service it could possibly be subverted and allow an attacker

access to the in-vehicle network. Thus, providing proper mechanisms for
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preventing intrusions is an important challenge. Firewalls to prevent
unauthorized accesses are necessary, and logging and detection
mechanisms are needed to detect and trace attackers. However, designing
these security solutions to meet the real-time requirements and the limitations
in the ECUs is a challenge.

A third research challenge is to protect the security solutions in the in-vehicle
network. This project defines security in this scenario. Assume various
cryptographic keys are used to secure the wireless communication and
access control lists are used to allow only authorized connections such that
the wireless gateway is protected against intrusions. An attacker could
potentially access the in-vehicle network via the OBD (on-board diagnostics)
port by physically connecting a device to the vehicle. If the security solutions
protect against attacks only via the wireless gateway, an attacker could
choose to attack the in-vehicle network via the OBD instead. For example,
the attacker could easily extract the needed cryptographic keys and update
the access control lists such that he can execute future attacks via the
wireless gateway. Thus, it is a challenge to protect the in-vehicle network and

the security credentials against physical attacks via the OBD.

. CAR L
NBRanpsel

Figure 20 - An example of car attack
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The usual motivation within the criminal world will be financial gain; therefore
a cyber attack against automotive systems could potentially provide criminals
with a repeatable, remotely exploitable mechanism for breaking into vehicles
for theft of vehicle contents and/or the vehicle itself. On a more sinister level,
should criminals be keen on impacting the safety of a victim’s vehicle in some
way then this might be achievable through cyber attack. Other criminal
activity might just relate to hackers, where no financial gain is sought but
merely the ability to demonstrate technical prowess through remotely

attacking and controlling automotive systems.
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3. AES cipher

AES will be the main encryption algorithm on which the following discussed

protocols will rely on. It belongs to the symmetric-key algorithm family.

The Advanced Encryption Standard (AES), also referenced as Rijndael (its
original name), is a specification for the encryption of electronic data
established by the U.S. National Institute of Standards and Technology
(NIST) in 2001.

AES has been adopted by the U.S. government and is now used worldwide.
It supersedes the Data Encryption Standard (DES), which was published in
1977 ™,

AES is based on a design principle known as a substitution-permutation
network, combination of both substitution and permutation, and is fast in both
software and hardware.

AES is a variant of Rijndael, which has a fixed block size of 128 bits, and a
key size of 128, 192, or 256 bits. By contrast, the Rijndael could work with
block and key sizes that may be any multiple of 32 bits, both with a minimum
of 128 and a maximum of 256 bits.

AES operates on a 4x4 column-major order matrix of bytes, called the state,
although some versions of Rijndael have a larger block size and have
additional columns in the state. Most AES calculations are done in a special
finite field.

The key size used for an AES cipher specifies the number of repetitions of
transformation rounds that convert the input, called the plaintext, into the final

output, called the ciphertext. The number of cycles of repetition is as follows:
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* 10 cycles of repetition for 128-bit keys.

* 12 cycles of repetition for 192-bit keys.

* 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing four similar

but different stages, including one that depends on the encryption key itself. A

set of reverse rounds is applied to transform ciphertext back into the original

plaintext using the same encryption key.
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3.1.

AES encryption algorithm

At the start of the Cipher, the input is copied to the State array as described

in Figure 23 M.

input bytes

ino in4 il’lg inlz
in; | ins | ing | ing
in, | ing | N | ingy
iny | ing | ing | ings

After an initial

implementing a

State array

9

So00 | So1 | So2 | So3
S10 | S11 | S12 | i3
$20 | S2.1 | S22 | 523
S30 | S31 | $32 | 833

9

Figure 22 - State array input and output

output bytes

outy

OUly

outg

outs

out,

outs

Outy

outz

out,

oults

out

outy

outs

outs

out

outs

Round Key addition, the State array is transformed by

round function 10, 12, or 14 times (depending on the key

length), with the final round differing slightly from the first Nr -1 rounds. The

final State is then copied to the output as described in Figure 22.

The round function is parameterized using a key schedule that consists of a

one-dimensional array of four-byte words derived using the Key Expansion

routine described in Sec. 3.2.

The Cipher is described in the pseudo code in Fig. 23.
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Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])

for  round =1 step 1 to Nr-1
SubBytes(state)
ShiftRows(state)
MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state

end

Figure 23 - AES cipher suite

The individual transformations - SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey() — process the State and are described in the following

subsections. In Figure 23, the array w[] contains the key schedule, which is
described in Sec. 3.2.

As shown in Figure 21, all Nr rounds are identical with the exception of the

final round, which does not include the MixColumns() transformation.
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3.1.1. SubBytes() Transformation

The SubBytes() transformation is a non-linear byte substitution that operates
independently on each byte of the State using a substitution table (S-box).
This S-box (Figure 25), which is invertible, is constructed by composing two
transformations:

1. Take the multiplicative inverse in the finite field GF(2°); the element {00} is

mapped to itself.

2. Apply the following affine transformation (over GF(2) ):

bi' = bi @ Dy +4ymods D Dyi +5)mods D Dyi +6)mods D Dyi +7)mods @ Ci

for 0 < i < 8, where b; is the i" bit of the byte, and ¢ is the i bit of
a byte c with the value {63} or {01100011}. Here and elsewhere, a
prime on a variable (e.g. b’) indicates that the variable is to be

updated with the value on the right.

In matrix form, the affine transformation element of the S-box can be

expressed as:

1
]
|
J
1
|
|
|

byl |11 0 0 0 1 1 1 1|5 |1
h| |1 1 000 1 1 1(h| |1
by 11 1.1 0 0 0 1 1{|b| |0
bl |1 1.1 1.0 0 0 1|b] [0
B[t 111100 ofa| o
b,| |10 1 1 1 1 1 0 0|b| |1
byl {0 0 1 1 1 1 1 Offb| |1
b, |0 001 1 1 1 1]b] |0]

Figure 24 illustrates the effect of the SubBytes() on the State.
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S S-Box ' - , .
0,0 | So.1 [ So,2 j}——“ ~ So.0 | Sox | So2 | Sos
S10 5 2 [ 513 S10 v 2 | Sis
“r.c 'Sr_c
Sr0| 521 522|523 S0 | S21 | S22 | Sas
S30| 531 [S32| 533 S30 | S31 | S32 | S5

Figure 24 - SubBytes() applies the S-box to each byte of the State

The S-box used in the SubBytes() transformation is presented in hexadecimal

form in Figure 25.
3

ol 2] 2] 3] a[ s 6[ 7] 8] 9] a[ b[ e[ a] e[ £

o[ 63[7c[ 77| o[ 2 6b|[ 6£| 5] 30 [ 01| 67 2b[ fe [ a7 [ ab | 76

1|l ca| 82| ¢9| 7d| £fa | 59| 47| £f0 )| ad | d4 | a2 | af | 9c | a4 | 72 | <O

2| b7 | £d| 93| 26 | 36| 3£ | £7 | cc | 34| a5 | e5 | £1| 71 | 48 | 31 | 15

3[04 c7 [ 23| 3| 18| 96| 05| 9a| 07 | 12| 80| e2 | eb | 27 | b2 | 75

4l o9 83| 2c|1a|1b| 6e| 5a] a0 52 3b| a6 3| 29| e3 | 2£] 84

5/ 53[ a1 00| eda| 20| fc| b1 | 5b| 6a| cb| be| 39| 4a| 4c | 58 cf

6| A0 | ef | aa | £b | 43 | 4d| 33 | 85| 45 | £9| 02 | 7£| 50 | 3¢ | 9£ | a8

7| 51| a3 | 40| 8£ | 92 | 9d | 38| £5 | be | b6 | da | 21| 10 | ££ | £3 | 42

*8[cd| 0c| 13| ec | 5£| 97| 44| 17| c4 | a7 | 7= | 3d| 64 | 54| 19| 73

ol 60| 81| 4f[ dc[ 22| 2a] 90 88] 46 [ ee [ b8 [ 14| de [ 5e| 0b | ab

al e0| 32| 3a| 0a| 49| 06| 24| 5¢c| c2 | d3 | ac| 62| 91| 95| e4 | 79

ble7| c8)| 37| 6d| 8d| d5 | 4e | a9 | 6c | 56 | f4 | ea | 65| Ta | ae | 08

c|ba| 78| 25| 2e | 1c| a6 | b4 | c6| eB | dd | 74| 1f | 4b | bd | 8b | 8a

dl 70 3e [ b5| 66| 48| 03] £f6| 0e| 61| 35 [ 57| bo| 86 c1 [ 1d] 9e

e| el | £8 | 98| 11 | 69| d9 | Be | 94| 9b | 1e | 87 | €9 | ce | 55 | 28 | 4f

f| 8c| al | 89| Od | bf | e6| 42| 68| 41 | 99| 2d| O£ | bO | 54 | bb | 16

Figure 25 - S-box: substitution values for the byte xy (Hex format)
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3.1.2. ShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State
are cyclically shifted over different numbers of bytes (offsets). The first row,
r=0, is not shifted. Specifically, the ShiffRows() transformation proceeds as

follows:

!
S e = Sy (cashifi(r,NbY)mod Nb For0<r<4and 0 =c<Nb,

Where the shift value shift(r,Nb) depends on the row number, r, as follows
(recall that Nb = 4):
shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3

This has the effect of moving bytes to “lower” positions in the row (i.e., lower
values of c in a given row), while the “lowest” bytes wrap around into the “top”
of the row (i.e., higher values of ¢ in a given row). Figure 26 illustrates the

ShiffRows() transformation.
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ShiftRows ()
S 050 57253 Sro|Sra |Sr2| 53
S A
S0.0 | S0 [ So2 | Sos S0.0 | Sox | So2 | So
S10| 511 | S12 | Sis @3‘7 Sia | Si2 | Sis | Sho

S20| 521 S22 523 @ S22 | 523 | S20 | S22
31 [ S5.2 | 553 rl:[:Djj S33 | Ss0 [ S31 | 532

Figure 26 - ShiftRows() cyclically shifts the last three rows in the State

3.1.3. MixClolumns() Transformation

The MixColumns() transformation operates on the State column-by-column,
treating each column as a four-term polynomial. The columns are considered
as polynomials over GF(2°) and multiplied modulo x* + 1 with a fixed

polynomial a(x), given by

a(x) = {03}x° + {01)x* + {01}x + {02}

This can be written as a matrix multiplication. Let

s'(x)=a(x)® s(x)
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Se. | [02 03 01 01]fs,,
5. 01 02 03 01f|s,, )
= _ ' tor 0 < ¢ < Nb.
S, . 01 01 02 03||s,

s, | 103 01 01 02fs,,

As a result of this multiplication, the four bytes in a column are replaced by

the following:

s‘.:v.c = ({0:} . SO.() @ ({03} . Sl.t)® Sl.c® SS.(
Sll.t = SO.(® ({O:} . Sl.() @ ({03} . S2.c) @ SS.c
S: = sO.t@ S“,@({O:} ¢ Slc)e({og} ¢ SS.t

S: = ({03} . SO.() @ Sl.c® S!c@({oz} . S3.¢' '

Figure 27 illustrates the MixColumns() transformation.

MixColumns ()

s Jo.c s/ s s\~ Soc s | s,

0.0 0.2 | S0 0.0 0.2 | So3
1
AY AY ,
lc 1lc

Siol =" 1515 | Sis Si0 < Pia | Siz
S2.0 $2c 522 | S23 S0 $2c 522 | Sa3

sl Sz Ise s | s s | S3c s, . | s
o]l “3.c P32 3 3.0 2.¢ P32 3.3

Figure 27 - MixColumns() operates on the State column-by-column
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3.1.4. AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by
a simple bitwise XOR operation. Each Round Key consists of Nb words from
the key schedule (Sec. 3.2). Those Nb words are each added into the

columns of the State, such that

'1,0 ° S‘2,c ° S'3,c ] = [SO,C ’ Sl,c ’ SZ,C ° S3,c ]®[Wround*Nb+c ]

[s'ye S
where [w;] are the key schedule words, and round is a value in the range
O<round< Nr. In the Cipher, the initial Round Key addition occurs when
round=0, prior to the first application of the round function (see Figure 21).
The application of the AddRoundKey/() transformation to the Nr rounds of the
Cipher occurs when 1 < round < Nr.

The action of this transformation is illustrated in Figure 28, where | =
round*Nb.

[ = round * Nb
50.c S0 .
S0.0 2 [ So3 L Soo [+ b2 | Ses
.c \ ' l.c '
sl 0 l(@ 1 2 SI 3
i -7 ,3 W, . 11"‘_3 1, ; 2 ,3
-S.w ) B ! SW '
s 0 € 1, S:3 S_ 0 &€ 2 S-.3
s: 0 SSC 2 SS._ S 0 ) s¢c B2 S:

Figure 28 - AddRoundKey() XORs each column of the State with a word from the key schedule
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3.2. Key Expansion algorithm

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
routine to generate a key schedule. The Key Expansion generates a total of
Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words, and each
of the Nr rounds requires Nb words of key data. The resulting key schedule
consists of a linear array of 4-byte words, denoted [w;], with / in the range
O0<i<Nb(Nr + 1).

The expansion of the input key into the key schedule proceeds according to
the pseudo code in Figure 29.

SubWord() is a function that takes a four-byte input word and applies the S-

box (Figure 22) to each of the four bytes to produce an output word.
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The function RotWord() takes a word [ag,a1,a2,a3] as input, performs a cyclic
permutation, and returns the word [as,a;,a3,a0]. The round constant word
array, Rconli], contains the values given by [x"",{00},{00},{00}], with x"" being
powers of x (x is denoted as {02}) in the field GF(2°) (note that i starts at 1,
not 0).

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin
word temp
i=0
while (i < Nk)
wli] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=1i+1
end while
i=Nk
while (i < Nb * (Nr+1)]
temp = wl[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/NKk]
else
if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i=i+1
end while
end

Figure 29 - Key Expansion pseudo code

From Figure 29, it can be seen that the first Nk words of the expanded key
are filled with the Cipher Key. Every following word, w[i], is equal to the XOR
of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For

words in positions that are a multiple of Nk, a transformation is applied to wli-
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1] prior to the XOR, followed by an XOR with a round constant, Rcon[i]. This
transformation consists of a cyclic shift of the bytes in a word (RotWord()),
followed by the application of a table lookup to all four bytes of the word
(SubWord()).

It is important to note that the Key Expansion routine for 256-bit Cipher Keys
(Nk=8) is slightly different than for 128 and 192-bit Cipher Keys. If Nk = 8 and
i-4 is a multiple of Nk, then SubWord() is applied to wfi-1] prior to the XOR.

3.3. AES Inverse cipher

The Cipher transformations in Sec. 3.1 can be inverted and then
implemented in reverse order to produce a straightforward Inverse Cipher for
the AES algorithm. The individual transformations used in the Inverse Cipher
-InvShiftRows(), InvSubBytes(),InvMixColumns(), and AddRoundKey() -
process the State; they are not described in the following sections as they

haven’t been implemented.

3.4. AES operation modes

Every symmetric key block cipher algorithm can work in different modes of
operation, as described in Sec. 2.2.2.

AES, being a symmetric block cipher, can operate in one of those modes.
The block cipher modes ECB, CBC, OFB, CFB, CTR provide confidentiality,
but they do not protect against accidental modification or malicious
tampering. Modification or tampering can be detected with a separate
message authentication code such as CBC-MAC, or a digital signature. The

cryptographic community recognized the need for dedicated integrity
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assurances and NIST responded with AES-CMAC, in a way another AES

mode of operation M.

3.5. AES - CMAC

AES-CMAC provides stronger assurance of data integrity than a checksum or
an error-detecting code. The verification of a checksum or an error-detecting
code detects only accidental modifications of the data, while CMAC is
designed to detect intentional, unauthorized modifications of the data, as well
as accidental modifications.

AES-CMAC achieves a security goal similar to that of HMAC.

Since AES-CMAC is based on a symmetric key block cipher, AES, and
HMAC is based on a hash function, such as SHA-1, AES-CMAC s
appropriate for information systems in which AES is more readily available

than a hash function.

AES-CMAC uses the Advanced Encryption Standard (AES) as a building
block. To generate a MAC, AES-CMAC takes a secret key, a message of
variable length, and the length of the message in octets as inputs and returns
a fixed-bit string called a MAC.

The core of AES-CMAC is the basic CBC-MAC. For a message, M, to be
authenticated, the CBC-MAC is applied to M. There are two cases of
operation in CMAC. Figure 31 illustrates the operation of CBC-MAC in both
cases. If the size of the input message block is equal to a positive multiple of
the block size (namely, 128 bits), the last block shall be exclusive-OR'ed with
K1 before processing. Otherwise, the last block shall be padded with 10%i
and exclusive-OR'ed with K2.

The result of the previous process will be the input of the last encryption. The

output of AES-CMAC provides data integrity of the whole input message.
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(a) positive multiple block length (b) otherwise

Figure 30 - Two cases of AES-CMAC

- CIPHg is AES-128 with key K.

- The message M is divided into blocks My,...M, where M; is the i-th
message block.

- The length of M; is 128 bits for i = 1,...,n-1, and the length of the last
block, M,, is less than or equal to 128 bits.

- K1 is the subkey for the case (a), and K2 is the subkey for the case (b).

- K1 and K2 are generated by the subkey generation algorithm described

in section 3.4.1.1.
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3.5.1.1. Subkey generation algorithm

The subkey generation algorithm, Generate_Subkey(), takes a secret key, K,
which is just the key for AES-128. The outputs of the subkey generation

algorithm are two subkeys, K1 and K2.

(K1,K2) := Generate_Subkey(K).

Subkeys K1 and K2 are used in both MAC generation and MAC verification
algorithms. K1 is used for the case where the length of the last block is equal
to the block length. K2 is used for the case where the length of the last block

is less than the block length.

Input : K (128-bit key)
Output : K1 (128-bit first subkey)
K2 (128-bit second subkey)

Constants: const_Zero is 0x00000000000000000000000000000000
const_Rb is 0x00000000000000000000000000000087
Variables: L for output of AES-128 applied to 02128

Step 1. L := AES-128(K, const_Zero);
Step 2. if MSB(L) is equal to O

then K1 :=L<<1;

else KI1 :=(L << 1) XOR const_Rb;
Step 3. if MSB(K1) is equal to 0

then K2 :=Kl1<<1;

else K2 := (K1 << 1) XOR const_Rb;
Step 4. return K1, K2;

Figure 31 - CMAC generate_subkey() pseudo code
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- In step 1, AES-128 with key K is applied to an all-zero input block.

- In step 2, K1 is derived through the following operation:
If the most significant bit of L is equal to 0, K1 is the left-shift of L
by 1 bit.
Otherwise, K1 is the exclusive-OR of const Rb and the left-shift of
L by 1 bit.

- In step 3, K2 is derived through the following operation:
If the most significant bit of K1 is equal to 0, K2 is the left-shift of
K1 by 1 bit.
Otherwise, K2 is the exclusive-OR of const Rb and the left-shift of
K1 by 1 bit.

- In step 4, (K1,K2) := Generate_Subkey(K) is returned.

3.5.1.2. MAC generation algorithm

The MAC generation algorithm, AES-CMAC(), takes three inputs, a secret
key, a message, and the length of the message in octets. The secret key,
denoted by K, is just the key for AES-128. The message and its length in
octets are denoted by M and len, respectively. The message M is denoted by
the sequence of M_i, where M_i is the i-th message block. That is, if M

consists of n blocks, then M is written as:

- M=Mq || Mz || ... [| Mns || Mp

The length of M;is 128 bits for i = 1,...,n-1, and the length of the last block M,

is less than or equal to 128 bits.
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The output of the MAC generation algorithm is a 128-bit string called a MAC,

which is used to validate the input message. The MAC is denoted by:

T := AES-CMAC(K,M,len)

Validating the MAC provides assurance of the integrity and authenticity of the
message from the source.

It is possible to truncate the MAC. According to CMAC, at least a 64-bit MAC
should be used as protection against guessing attacks. The result of
truncation should be taken in most significant bits first order.

The block length of AES-128 is 128 bits (16 octets). There is a special
treatment if the length of the message is not a positive multiple of the block
length. The special treatment is to pad M with the bit-string 10%i to adjust the
length of the last block up to the block length.

For an input string x of r-octets, where 0 <= r < 16, the padding function,

padding(x), is defined as follows:

padding(x) = x || 10N where i is 128-8*r-1

That is, padding(x) is the concatenation of x and a single '1', followed by the

minimum number of '0's, so that the total length is equal to 128 bits.
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Figure 32 describes the MAC generation algorithm.

Input :K (128-bitkey)
:M ( message to be authenticated )
: len (length of the message in octets )
Output : T ( message authentication code )
Constants: const_Zero is 0x00000000000000000000000000000000
const_Bsize is 16
Variables: K1, K2 for 128-bit subkeys
M_i is the i-th block (i=1..ceil(len/const_Bsize))
M_last is the last block xor-ed with K1 or K2
n  for number of blocks to be processed
r  for number of octets of last block
flag for denoting if last block is complete or not

Step 1. (K1,K2) := Generate_Subkey(K);
Step 2. n := ceil(len/const_Bsize);
Step 3. ifn=0
then
n:=1;
flag := false;
else
if len mod const Bsize is 0
then flag := true;
else flag := false;
Step 4. if flag is true
then M _last :=M n XOR K1;
else M _last := padding(M_n) XOR K2;
Step 5. X :=const_Zero;
Step 6. fori:=1ton-1do
begin
Y =X XORM i
X = AES-128(K,Y);
end
Y ;=M last XOR X;
T := AES-128(K,Y);
Step 7. return T;

Figure 32 - AES-CMAC pseudo code
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In step 1, subkeys K1 and K2 are derived from K through the subkey

generation algorithm.

In step 2, the number of blocks, n, is calculated. The number of blocks
is the smallest integer value greater than or equal to the quotient
determined by dividing the length parameter by the block length, 16

octets.

In step 3, the length of the input message is checked. If the input
length is O (null), the number of blocks to be processed shall be 1, and
the flag shall be marked as not-complete-block (false).

Otherwise, if the last block length is 128 bits, the flag is marked as

complete-block (true); else mark the flag as not-complete-block (false).
In step 4, M_last is calculated by exclusive-OR'ing M_n and one of the
previously calculated subkeys. If the last block is a complete block
(true), then M_last is the exclusive-OR of M_n and K1.

Otherwise, M_last is the exclusive-OR of padding(M_n) and K2.

In step 5, the variable X is initialized.

In step 6, the basic CBC-MAC is appliedtoM_1,....M_{n-1},M_last.

In step 7, the 128-bit MAC, T := AES-CMAC(K,M,len), is returned.

If necessary, the MAC is truncated before it is returned.
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3.5.1.3. Security considerations

The security provided by AES-CMAC is built on the strong cryptographic
algorithm AES. However, as is true with any cryptographic algorithm, part of
its strength lies in the secret key, K, and the correctness of the
implementation in all of the participating systems. If the secret key is
compromised or inappropriately shared, it guarantees neither authentication

nor integrity of message at all.

If and only if AES-CMAC is used properly it provides the authentication and

integrity that meet the best current practice of message authentication.

3.6. AES Key Wrap algorithm

United States of America has chosen AES Key Wrap algorithm for AES keys
encryption. This algorithm is described in this section because it will be
useful, together with AES-CMAC, during the developing of MACsec Key

Agreement protocol in Sec. 4.5.2.

The AES key wrap algorithm is designed to wrap or encrypt key data M.

The key wrap operates on blocks of 64 bits. Before being wrapped, the key
data is parsed into n blocks of 64 bits.

The only restriction the key wrap algorithm places on n is that n be at least
two.

The inputs to the key wrapping process are the KEK and the plaintext to be
wrapped. The plaintext consists of n 64-bit blocks, containing the key data

being wrapped. The key wrapping process is described below (Figure 33).
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1) Initialize variables.
Set AO to an initial value (see 2.2.3)
Fori=1ton

R[O][i] = P[i]

2) Calculate intermediate values.
Fort=1 to s, where s = 6n
Alt] = MSB(64, AES(K, A[t-1] I R[t-1][1])) A t
Fori=1ton-1
R[t][i] = R[t-1][i+1]
R[t][n] = LSB(64, AES(K, A[t-1] | R[t-1][1]))

3) Output the results.
Set C[0] = A[t]
Fori=1ton

Cli] = R[t][i]

Figure 33 - AES Key Wrap pseudo code

is compared to the expected value of A[O].

error.

The default initial value (IV) is defined to be the hexadecimal constant:

A[0] =1V = A6A6AGAGA6A6A6A6

The initial value (IV) refers to the value assigned to A[0] in the first step of the
wrapping process. This value is used to obtain an integrity check on the key
data. In the final step of the unwrapping process, the recovered value of A[0]
If there is a match, the key is
accepted as valid, and the unwrapping algorithm returns it. If there is not a

match, then the key is rejected, and the unwrapping algorithm returns an
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The use of a constant as the IV supports a strong integrity check on the key
data during the period that it is wrapped. If unwrapping produces A[0] =
ABAGAGAGAGABAGAGL, then the chance that the key data is corrupt is 2% |f
unwrapping produces A[0] any other value, then the unwrap must return an

error and not return any key data.
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4. MAC Security (MACsec)

4.1. Introduction

After the discussion of symmetric cryptographic algorithms (Sec. 3), with
special emphasis on AES and its modes of operations AES-CMAC and AES
Key Wrap, in this section a new protocol is introduced, MACsec, which takes

advantage of the previously treated algorithms.

MACsec (Media Access Control security) ! has been chosen as security
standard by Renesas, in the developing of a project whose aim is to establish
secure communications between devices inside automotive environment on
Ethernet links.

The main problem to deal with is the access by unauthorized people or
devices to controlled or confidential information.

The best and most secure solution to vulnerability at the access edge is to
use the intelligence of the network. The standard IEEE 802.1X provides port-
based access control using authentication, but authentication alone does not
guarantee the confidentiality and integrity of data on the LAN. While physical
security and end-user awareness can mitigate threats to data on an IEEE
802.1X—authenticated LAN, in the case of automotive field there may be
situations in which the LAN needs additional protection. When additional
protection is needed we can enable data confidentiality and integrity on the
LAN by using MAC Security (MACsec). Defined by the IEEE 802.1AE
standard, MACsec secures communication for authorized endpoints on
Ethernet links.
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802.1X MACsec

\ provides | provides
Port-based access control using data CONFIDENTIALITY and
AUTHENTICATION INTEGRITY

\_ /
Y

AUTHENTICATION + CONFIDENTIALITY + INTEGRITY

Figure 34 - 802.1X and MACsec

4.2. About MACsec

4.2.1. MACsec Benefits

The reasons why Renesas, and maybe other companies, are going in the

direction of MACsec implementations are to be found in the following benefits
of the protocol on wired networks:

« Confidentiality: MACsec helps ensure data confidentiality by providing
strong encryption at Layer 2.

» Integrity: MACsec provides integrity checking to help ensure that data
cannot be modified in transit.

» Flexibility: You can selectively enable MACsec using a centralized

policy, thereby helping ensure that MACsec is enforced where required
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while allowing non-MACsec-capable components to access the
network.

Network intelligence: Unlike end-to-end, Layer 3 encryption techniques
that hide the contents of packets from the network devices they cross,
MACsec encrypts packets on a hop-by-hop basis at Layer 2, allowing
the network to inspect, monitor, mark, and forward traffic according to

your existing policies.

@, Network Analyzer
o Encrypted Encrypted Encrypted Encrypted
~ Switch Switch Switch Workstati
Sarves or ion
fmmnl, Network Analyzer
Figure 35 - MACsec hop-by-hop basis
4.2.2. MACsec limitations

Although MACsec offers outstanding data security, it has some limitations:

Endpoint support:. Not all endpoints support MACsec.

Hardware support. Line-rate encryption typically requires updated
hardware on the access switch.

Technology integration: Enabling MACsec may affect the functions of
other technologies that also connect at the access edge, such as IP
telephony. Understanding and accommodating these technologies is

essential to a successful deployment.
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4.3. 802.1X without MACsec

MACsec was primarily designed to be used in conjunction with IEEE 802.1X-
2010. IEEE 802.1X provides port-based access control using authentication.
An IEEE 802.1X-enabled port can be dynamically enabled or disabled based
on the identity of the user or device that connects to it. Figure 36 illustrates
the default behavior of an IEEE 802.1X—enabled port prior to authentication:

we can see that if the endpoint’s identity is unknown all traffic is blocked.

Figure 36 - 802.1X behavior prior to authentication without MACsec

After authentication instead (Figure 37), the endpoint’s identity is known and
all traffic from that endpoint is allowed. The switch performs source MAC
address filtering and port state monitoring to help ensure that only the

authenticated endpoint is allowed to send traffic.
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Figure 37 - 802.1X behavior after authentication without MACsec

Before the 2010 revision of IEEE 802.1X, there was no mechanism to help
ensure the confidentiality or integrity of the traffic sent after authentication.
Because traffic was sent in the clear with no integrity checks, rogue users
with physical access to the authenticated port could monitor, modify, and

send traffic.

4.4, 802.1X-2010

IEEE 802.1X-2010 defines the way that MACsec can be used in conjunction
with authentication to provide secure port-based access control ™1,

IEEE 802.1X authenticates the endpoint and transmits the necessary
cryptographic keying material to both sides.

Using the master keys derived from the IEEE 802.1X authentication, MACsec
can establish an encrypted link on the LAN, thereby helping ensure the

security of the authenticated session.
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Y Even with physical access,
’3}5\ rogue users cannot monitor
or spoof encrypted traffic

Figure 38 - MACsec enabled port

As we can see from Figure 38, rouge users, even with physical access, can’t
monitor or spoof encrypted traffic on the wire.

When MACsec is applied on both the uplink and the downlink, the MACsec
sessions are completely independent. Moreover, while all traffic is encrypted
on the wire, the traffic is in the clear inside each switch. This feature allows
the switch to apply all the network policies (quality of service [QoS], deep
packet inspection, NetFlow, etc.) to each packet without compromising the
security of the packet on the wire. With hop-by-hop encryption, MACsec

secures communication while maintaining network intelligence.
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441. Secure communication

Each port that is capable of participating in an instance of the secure MAC
Service comprises:

 MAC Security Key Agreement (MKA) Entity (KaY)

 MAC Security Entity (SecY)

A secure Connectivity Association (CA) is created to meet the requirements
of the MAC Service and MACsec for connectivity between the stations
attached to an individual LAN.

Each CA is supported by unidirectional Secure Channels (SCs), each SC
supporting secure transmission of frames through the use of symmetric key
cryptography, from one of the systems to all the others in the CA.

Each SC is supported by an overlapped sequence of Security Associations
(SAs).

Each SA uses a fresh Secure Association Key (SAK) derived by the MKA to
provide the MACsec service guarantees and security services for a sequence

of transmitted frames.
In the following Figure we can see a typical scenario where the CA is created

by the MACsec Key Agreement following mutual authentication and
authorization of A, B and C, and the two SCs that support the CA.
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Figure 39 - Secure communication scenario

4.4.2. Components and Protocols

MACsec uses three components (as shown in Figure 40):

1. Supplicant. The supplicant is a client that runs on the endpoint and
submits credentials for authentication. To support MACsec, the supplicant
must also be able to manage MACsec key negotiation and encrypt

packets.

2. Authenticator. The authenticator (switch) is the network access device that
facilitates the authentication process by relaying the supplicant’s
credentials to the authentication server. The authenticator enforces the
network access policy, including MACsec. Like the supplicant, the
authenticator must be capable of MACsec key negotiation and packet
encryption. The authenticator typically needs special hardware to support

MACsec at line rate.
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3. Authentication server. The authentication server validates the supplicant’s
credentials and determines what network access the supplicant should
receive. In MACsec, the authentication server plays an important role in
the distribution of master keying material to the supplicant and
authenticator. In addition, the authentication server can define the MACsec

policy to be applied to a particular endpoint.

Authenticator 2 Authentication server
RADIUS / Diameter

Supplicant

Internet or other LAN resources

Figure 40 - MACsec components and protocols

MACsec uses several protocols:

» Extensible Authentication Protocol (EAP). The message format and
framework defined by RFC 4187 that provides a way for the supplicant
and the authenticator to negotiate the EAP authentication method and

MACsec association.
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« EAP method: Protocol that defines the authentication method—that is,
the credential type and how it will be submitted from the supplicant to
the authentication server using the EAP framework; for MACsec, the
EAP
method must be capable of generating keying material to export a

master session key (MSK) to the supplicant and authentication server.

« MACsec Key Agreement (MKA): Protocol that discovers MACsec peers
and negotiates the keys used by MACsec; MKA is defined in IEEE
802.1X-2010.

» Security Association Protocol (SAP): A pre-standard key agreement

protocol similar to MKA.

 EAP over LAN (EAPoL): An encapsulation defined by IEEE 802.1X for
the transport of EAP from the supplicant to the switch over IEEE 802
wired networks; EAPoL is a Layer 2 protocol (Sec. 4.5.2.2).

« RADIUS: Essentially the standard for communication between the
switch and the authentication server - the switch extracts the EAP
payload from the Layer 2 EAPoL frame and encapsulates the payload
inside a Layer 4 RADIUS packet; RADIUS is also used to deliver keying

material to the authenticator.

4.5. MACsec Sequence

With the following schema (Figure 41) we can see how the components and
protocols of MACsec work together. Messages exchange is divided into three

stages: master key distribution, session key agreement, and session secure.
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A fourth stage, session termination, is not shown. Each stage is described in

the sections that follow.

Supplicant Authenticator

1

Authentication and
master key distribution

X208 3331

Session key
agreement

Session secure

Figure 41 - High Level 802.1X and MACsec sequence

4.51. Authentication and Master Key distribution

Through these messages (IEEE 802.1X) master key material will be provided
to the supplicant and switch that will subsequently be used by MACsec.

By using an EAP method that supports the generation of encryption keys, the
supplicant and the authentication server independently derive the same MSK

(Master Session Key). The MSK passes through a key derivation function to
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generate a Connectivity Association Key (CAK) on the supplicant and the
authentication server. The CAK is a long-lived master key that is used to
generate all other keys needed for MACsec in the MKA.

The switch has no visibility into the details of the EAP session between the
supplicant and the authentication server, so it cannot derive the MSK or the
CAK directly. Instead, the switch receives the CAK from the authentication
server in the Access-Accept message at the end of the IEEE 802.1X
authentication. The CAK is delivered in the RADIUS vendor-specific attributes
(VSAs) MS-MPPE-Send-Key and MS-MPPE-Recv-Key. Along with the CAK,
the authentication server sends an EAP key identifier that is derived from the
EAP exchange and is delivered to the authenticator in the EAP Key-Name

attribute of the Access-Accept message.

4.5.2. Session key agreement (MKA)

In this stage of the protocol both the Supplicant and the Authenticator have
the same CAK key: the Supplicant derived it from the MSK using a Key
Derivation Function (Sec. 4.5.2.1), while the Authenticator received it from the
Authentication Server in the first stage.

This stage takes the name of MACsec Key Agreement (MKA) protocol. The
Authenticator’s goal is to deliver the SAK (Secure Association Key) to the
Supplicant as an encryption key for the future MACsec messages. To do this,
the Authenticator derives other two keys (ICK and KEK) starting from the
CAK, which is not used directly. ICK (ICV Key) is used for integrity of the
SAK, while the KEK (Key Encryption Key) is used in the AES Key Wrap
algorithm to wrap the SAK to be distributed.
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Figure 42 - MKA key hierarchy

In the above Figure the MKA key hierarchy is shown.

The root of key hierarchy for any given instance of MKA is the secure

Connectivity Association Key (CAK), a secret key. Possession of a CAK for

the CA is a prerequisite for membership in each CA supported by MACsec,

and all potential members possess the same CAK and are attached to the

same LAN.

The main function, which is used in the creation of the two keys ICK and
KEK, is the KDF (Key Derivation Function), defined in the standard (Sec.
4.5.2.1). KDF uses a PRF (Pseudo Random Function), which in this case is

AES-CMAC.

4.5.2.1. KDF (Key Derivation Function)
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The key derivation function (KDF) defined in the 802.1X-2010 standard is the

main function used to derive the keys in the MKA key hierarchy (see Figure

42).

The KDF uses a pseudorandom function (PRF), which shall be AES-CMAC-

128 when the derivation key is 128 bits.

The KDF is described as follows:

Output— KDF (Key, Label, Context, Length)

where

Input:

Key, a key derivation key of 128 or 256 bits

Label, a string identifying the purpose of the keys derived using this KDF Context, a bit
string that provides context to identify the derived key

Length, the length of the output in bits encoded in two octets with the most significant octet

first

Output: a Length-bit derived value

Fixed values:

h, the length of the output of the PRF in bits

r, denoting the length of the binary representation of the counter i

iterations «— (Length + (h-1))/h

if iterations > 2'-1, then indicate an error and stop.

result «— ""

do i =1 to iterations

result «— result | PRF(Key, i | Label | 0x00 | Context | Length)
od

return first Length bits of result, and securely delete all unused bits

Figure 43 - KDF pseudo code
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4.5.2.2. MKA transport

MKA provides a secure multipoint-to-multipoint transport between the
members of the same CA, suitable for conveying information that is constant,
or refreshed or acknowledged by the MKA applications that make use of that
transport. The CAK is used to authenticate each protocol data unit (MKPDU)
transmitted, providing proof of its transmission by a CA member, and each
station includes its own randomly chosen identifier and a message number in
the MKPDU. By transmitting MKPDUs that contain the identifiers and recent
message numbers of the other participants, each member proves that it is in
current possession of the CAK and is actively participating in the protocol,
thus demonstrating the ‘liveness’ of the MKPDU and distinguishing it from
MKPDUs that could have been captured by an attacker and played or
replayed later—with the aim of disrupting the protocol or of influencing its
outcome. MKPDUs are transmitted at regular intervals of MKA Hello Time or
MKA Bounded Hello Time.

The message numbers also serve to enforce in-order delivery, and each of
the MKA applications is designed so that the information conveyed in each
MKPDU is idempotent, i.e., can be repeated without further changing the
state of a recipient, and complete, i.e., fully expresses the desire of the
transmitter for state change at the recipient. This design philosophy simplifies
protocol analysis and allows a receiver to discard MKPDUs with prior
message numbers.

The MKA transport is fully distributed and, as a consequence, robust in the
face of the failure of any participant or of the LAN connectivity to that

participant.

69



4.5.2.3. EAPoL

MKA Protocol Data Units (MKPDUs) are transmitted as body of EAPoL MKA
messages.
EAP (Extensible Authentication Protocol) is an authentication framework
which supports multiple authentication methods.
The encapsulation of EAP over IEEE 802 is defined in IEEE 802.1X and
known as "EAP over LANs" or EAPOL.
The same three main components are defined in EAP and EAPoL to
accomplish the authentication conversation:

1. Supplicant (Port Authentication Entity (PAE) seeking access to network

resources)
2. Authenticator (PAE that controls network access)
3. Authentication Server (a RDIUS/AAA server)

The following figure shows how these LAN components are connected in a

wired environment (as discussed for MACsec in Sec. 4.5).

Enterprise Edge/ RRiGH=-A%g=
ISP Access SialsET=AAd 1

EAPoL

Authenticato Authentication Server
[PAE] [PAE] [RADIUSIAAA]

Figure 44 - EAPoL architecture
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The EAPoL frame has the following format:

Ethernet : Packet Packet Body Frame Check
MAC Header Type "™ Type  Lengh  Packet Body “geiience
12 bytes 2bytes 1byte 1byte  2bytes variable 4 bytes

Figure 45 - EAPoL frame format

The fields in the frame are:

MAC Header
The first 6 bytes of the MAC header are the Destination Address and the last

6 bytes are the Source Address.

Ethernet Type
The Ethernet Type contains a 88-8e, this is the two byte type code assigned
to EAPoL.

Version

In 2004 Version 2 was standardized, nothing has been standardized since.
Packet Type

The Packet Type field is a byte long and represents the type of package the

frame is.
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Packet Type Name Description
00000000 EAP-Packet Contains an encapsulated EAP frame (this

is what majority of EAPoL frames are)

00000001 EAPOL-Sart A supplicant can issue an EAPOL-Start
fram instead of waiting for a challenge
from the

authenticator

00000010 EAPOL-Logoff  Used to return the state of the port to
unauthorized when the supplicant is

finished using the

network
00000011 EAPOL-Key Used to exchange Cryptographic Keying
information
00000100 EAPOL- Provided as a method of allowing Alerting
Encapsulated-  Standards Forum (ASF) alerts (ex. specific
ASF-Alert SNMP traps) to be forwarded through a

port that is in the Unauthorized state

00000101 EAPOL-MKA Used to exchange

During the MKA protocol the EAPoL method used is the EAPOL-MKA (type
5).

Packet Body Length

The Packet Body Length field is a 2 byte value representing packet body
length (It is set to 0 when there is no packet body)
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Packet Body
The Length field is two bytes long and contains the number of bytes in the
entire packet. EAP assumes anything in excess of the Length is padding that

can be ignored.

Frame Check Sequence
The Frame Check Sequence (FCS) is checksum value added to the frame for

error detection and correction.

Each MKPDU (Figure 46) comprises a humber of parameter sets. The first of
these, the Basic Parameter Set, is always present, and is followed by zero or
more further parameter sets, followed by the ICV. The ICV comprises the last
16 octets of the MKPDU, as indicated by the EAPOL Packet Body Length.

Protocol Version
Packet Type = EAPOL-MKA
Packet Body Length Size
Basic Parameter Set Multiple of 4 octets
Packet Body Parameter Set Multiple of 4 octets
(MKPDU) Parameter Set Multiple of 4 octets
ICV 16 octets

Figure 46 - EAPOL - MKA packet body with MKPDU format

4.5.2.4. SAK generation
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The Key Server is responsible for generating and distributing MACsec SAKSs,
using AES Key Wrap, to each of the other members of the CA, using the
MKA transport.

Each SAK is identified by a 128-bit Key Identifier (KI), comprising the Key
Server’'s Ml (providing the more significant bits) and a 32-bit Key Number
(KN) assigned by that Key Server (sequentially, beginning with 1). Each Kl is
used to identify the corresponding SAK for the purposes of SA assignment,
and appears in the clear in MKPDUSs, so network management equipment
and personnel can observe and diagnose MKA operation (if necessary)

without having access to any secret key.

Each SAK should be generated using the KDF specified in Sec. 4.5.2.1.

using the following transform:

SAK = KDF(Key, Label, KS-nonce | Ml-value list | KN, SAKlength)

Where:

- Key = CAK Label = “IEEE8021 SAK”

- KS-nonce = a nonce of the same size as the required SAK, obtained
from an RNG each time an SAK is generated.

- Mil-value list =a concatenation of MI values (Member Identifier,
randomly chosen by each participant at the beginning of the protocol)
from all live participants.

- KN = four octets, the Key Number assigned by the Key Server as part
of the Ki

- SAKlength = two octets representing an integer value (128 for a 128 bit
SAK, 256 for a 256 bit SAK) with the most significant octet first.

74



4.5.2.5. CAK derivation

A pairwise CAK is derived directly from the EAP MSK using the following

transform:

CAK = KDF(Key, Label, mac1 | mac2, CAKlength)

Where:

Key = MSK[0-15] for a 128 bit CAK, MSK[0-31] for a 256 bit CAK.

Label = "IEEE8021 EAP CAK"

mac1 = the lesser of the two source MAC addresses used in the
EAPOL-EAP exchange.

mac2 = the greater of the two source MAC addresses used in the
EAPOL-EAP exchange.

CAKlength = two octets representing an integer value (128 for a 128 bit
CAK, 256 for a 256 bit CAK) with the most significant octet first.

A 16 octet CKN is derived from the EAP session ID using the following

transform:

CKN = KDF(Key, Label, ID | mac1| mac2, CKNlength)

Where:

Key = MSK|[0-15] for a CKN naming a 128 bit CAK, MSKJ[0-31] for
naming a 256 bit CAK.
ID = EAP-Session-ID Label = "IEEE8021 EAP CKN"
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mac1 = the lesser of the two source MAC addresses used in the
EAPOL-EAP exchange.
mac2 = the greater of the two source MAC addresses used in the
EAPOL-EAP exchange.
CKNlength = two octets representing an integer value (128) with the

most significant octet first.

4.5.2.6. ICK derivation

ICK (Integrity Check value Key) is a 128bit key derived using the KDF with

the following parameters:

Key : CAK (16 octets)

Label : “IEEE8021 ICK” (12 octets)

Context: first 16 octets of the CKN for the CAK
Length: ICK length (“0080”, 2 octets)

This is a test vector for the ICK derivation.

Key : 135bd758 bOeebc11 c55ff6ab 19fdb199
Label : 49454545 38303231 2049434b

Context: 96437a93 ccf10d9d fe347846 cce52c7d
Length: 0080

Output: 8f1c5¢cb1 c8ed2e5f 047906e0 473aad4d

The ICK key is used to produce an ICV for integrity protection as described in
Sec. 4.5.2.8.
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4.5.2.7. KEK derivation

KEK (Key Encryption Key) is a 128bit key (Figure 42) that will be used as key
in the AES Key Wrap algorithm (Sec. 3.6) to protect the session key SAK for

MACsec communication.

The KEK is derived from the CAK using the following transform:

KEK = KDF(Key, Label, Keyid, KEKLength)

Where:
- Key = CAK Label = “IEEE8021 KEK”
- Keyid = the first 16 octets of the CKN, with null octets appended to pad
to 16 octets if necessary
- KEKLength = two octets representing an integer value (128 for a 128 bit
KEK, 256 for a 256 bit KEK) with the most significant octet first

4.5.2.8. Message authentication

Each protocol data unit (MKPDU) transmitted is integrity protected by an 128
bit ICV, generated by AES- CMAC using the ICK:

ICV = AES-CMAC (ICK, M, 128)
M = DA + SA + (MSDU — ICV)

In other words, M comprises the concatenation of the destination and source
MAC addresses, each represented by a sequence of 6 octets in canonical
format order, with the MSDU (MAC Service Data Unit) of the MKPDU
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including the allocated Ethertype, and up to but not including, the generated
ICV.
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5. MKA Key Hierarchy SW Implementation

After the conceptual and algorithmic description of AES and MACsec, with
particular attention to the MKA Key Hierarchy protocol, it's possible, after the
commitment of Renesas, to show a software implementation of the key
hierarchy described in Sec. 4.5.2.

The implemented software will be used to test the hardware solution (Sec. 6),

to show its output correctness.

5.1. Java implementation

One of the main reasons Java has been chosen at first is its platform
independence, which means that Java programs can be run on many
different types of computers. A Java program runs on any computer with a
Java Runtime Environment, also known as a JRE, installed. A JRE is
available for almost every type of computer — PCs running Windows,
Macintosh computers, Unix or Linux computers, huge mainframe computers,

and even cell phones.

Regarding automotive environment Java is not the best solution, but as will
be shown later (Sec. 5.2) a C implementation will be preferred.
However Java software is very useful for future hardware results test and it’s

faster and easier to implement respect to C.
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5.1.1. AES - CMAC

The AES-CMAC Java module has been developed to obtain a CMAC value
starting from an input message and key of variable length. The realization
followed the specifications of the [rfc4493] standard.
INPUTS:

- Message to be encrypted

- Key for encryption

OUTPUT:
- CMAC 128bit value

Start time (ms):1430211064318

Input message : a8de55170c6dc@d8dde32f508bf49b70
End time (ms):1430211064545

Final value: cfef9b7839841fdbccbbbc2cf238f7a3

Figure 47 - CMAC Java sample output

5.1.1.1. Cipher.class

As described in Sec. 3.5 the AES-CMAC relies on AES encryption algorithm.

The final software takes advantage of the Java Cipher.class class: this class
provides the functionality of a cryptographic cipher for encryption and
decryption. It forms the core of the Java Cryptographic Extension (JCE)

framework X,
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In order to create a Cipher object, the application calls the Cipher's
getinstance method, and passes the name of the requested fransformation to
it. Optionally, the name of a provider may be specified.

A transformation is a string that describes the operation (or set of operations)
to be performed on the given input, to produce some output.

A transformation always includes the name of a cryptographic algorithm (e.g.,
AES), and may be followed by a feedback mode and padding scheme.

A transformation is of the form:

- "algorithm/mode/padding" or

- "algorithm"

(in the latter case, provider-specific default values for the mode and padding

scheme are used).

The transformation used in this case has been of the type:

Cipher aesCipher = Cipher.getinstance("AES/CBC/NOPADDING");

As we can see the algorithm is of course AES, while the mode is CBC with no
padding; there is no CMAC mode in the modes list of the transformations
which can be requested by the getinstance method.

After having the cipher instance, the init method is called to initialize the

cipher with a key and a set of algorithm parameters.

public final void init(int opmode, Key key, AlgorithmParameterSpec params)

throws InvalidKeyException, InvalidAlgorithmParameterException

opmode - the operation mode of this cipher (this is one of the following:
ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)
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key - the encryption key

params - the algorithm parameters

The cipher is initialized for one of the following four operations: encryption,
decryption, key wrapping or key unwrapping, depending on the value of

opmode.

In the CMAC case, the init method is called as follows:

aesCipher.init(Cipher.ENCRYPT_MODE, key, ZERO_1V);

where:

- opmode is ENCRYPT_MODE since we have to encrypt the message
created with the CMAC algorithm

- key is a 128bit key

- ZERO_IV is a 128bit initialization vector (as requested in the CMAC
algorithm) of 16 octets equals to O0x00; it belongs to the

IvParameterSpec class which specifies an initialization vector (IV).

To start the encryption the method update has to be called:

public final int update(byte[] input, int inputOffset, int inputLen, byte[] output,
int outputOffset)
throws ShortBufferException

The update method used in the case of CMAC continues a multiple-part
encryption processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive,
are processed, and the result is stored in the output buffer, starting at

outputOffset inclusive.
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Parameters:

- input - the input buffer

inputOffset - the offset in input where the input starts

inputLen - the input length

output - the buffer for the result

outputOffset - the offset in output where the result is stored

At the end of a multi-part encryption done with update method, the doFinal

method has to be called:

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output,
int outputOffset)
throws ShortBufferException, lllegalBlockSizeException,

BadPaddingException

The method encrypts data in a single-part operation, or, in this case, finishes
a multiple-part operation.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive,
and any input bytes that have been buffered during a previous update

operation, are processed, with padding (if requested) being applied.

Parameters:

input - the input buffer

- inputOffset - the offset in input where the input starts
- inputLen - the input length

- output - the buffer for the result

- outputOffset - the offset in output where the result is stored
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5.1.1.2. Results

In order to test the software solution of the AES-CMAC the results are being
compared to the test vectors of AES-CMAC 128 given by NIST ¥,

5.1.1.3. Applet Java and Web Server

After the AES_CMAC Java implementation, a Web Applet has been created
to give the possibility to use the CMAC calculator on a webpage available on

the net.

The homepage of the so called CMACalculator (Figure 48) consists in two

simple fields asking for the key and the message for the encryption algorithm.

CMACalculator

[a)
o

Key: Must be 128 bit

Message:

CMAC:

Calculate CMAC

Figure 48 - CMACalculator homepage
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To make our Java aesCmac class run by a web browser, a Java applet has

to be realized.

A Java applet is a small application which is written in Java and delivered to
users in the form of bytecode. The user launches the Java applet from a web
page, and the applet is then executed within a Java Virtual Machine (JVM) in

a process separate from the web browser itself.

A Java applet extends the class java.applet.Applet. The class which must
override methods from the applet class to set up a user interface inside itself
(Applet) is a descendant of Panel which is a descendant of Container. As
applet inherits from container, it has largely the same user interface
possibilities as an ordinary Java application, including regions with user

specific visualization.

So to turn the aesCmac class in a Java applet it must extend Applet:

public class AesCmac extends Applet{ ...}

Now the html page has to include the <applet> tag in the <head> of the page:

<APPLET id="cmac" CODE="AesCmac.class">

Of course to make the applet run in the web browser, Java must be activated.
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5.1.2. Results and performance

The main module in the MKA Key Hierarchy protocol from a software point of
view is the AES-CMAC described in Sec. 5.1.1.

Another implemented module is AES Key Wrap algorithm, which is compliant
with the rfc3394.

The whole MKA Key Hierarchy Java implementation flow is shown below:

AES KEY
WRAP (SAK)

ICV (ICK)
Figure 49 - Java SW flow

RESULTS
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To test the performance of the Java implementation we have to face the time

precision issues related to:
- Clock resolution (less accuracy)
- Java Virtual Machine (JVM) implementation in each operating system

- Computer architecture

Java.lang.System.currentTimeMillis() is used to get timing information; it runs
faster then others (5/6 CPU clocks).

Protocol Speed in ms

AES-CMAC 727
AES KEY WRAP 534
ICV 230
TOTAL 1491

Figure 50 - MKA Key hierarchy Java performance

These results are obtained with the following computer architecture:
- CPU: Intel i7 2,3GHz
- RAM: 8GB DDR3
- OS: Win 7 64bit
- JVM version 8, build 1.8.0_45-b14

As visible from the above table, the most time expensive software module is

the AES-CMAC, since it has to encrypt multiple times using the AES cipher.
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5.2. C implementation

The C implementation of the AES-CMAC algorithm came straightforward
after the need to authenticate the devices to the main board, which are not
MACsec already capable. The other modules of MKA Key Hierarchy are not

implemented yet.

To deal with AES encoding in C there is the need of the OpenSSL libray,

which has to be included in the way:

#include <openssl/aes.h>

The version of OpenSSL used is the 1.0.2.

With OpenSSL, including AES.h, we can encrypt using AES in this way:

Char *key; //String containing the key

unsigned char IN[16] =“....... s

unsigned char OUT[16] =“....... s

AES_KEY aes; /Istructure to hold the key
AES_set_encrypt_key (key, 128, &aes);
AES_encrypt (IN ,OUT , &aes); // final encryption

Figure 51 - Aes C usage
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The CMAC software structure is as follows:

SOURCE FILE HEADER FILE
Implementation Interface
cmac.cpp cmac.h

#include “cmac.h”

#include <openssl/aes.h>

The test file main.cpp (#include “cmac.h”) produces the following screen

outputs:

Insert 32 Hex KEY (128bit)

c595ee7655c8eeecd3e8fbbbc439dbe2

Specify message length: from @ to 128 digits (not odd numbers)
64

Insert 64 Hex MESSAGE
39fb12288a671151ta4191d597c834dcPav49a4fc6cab86b1810ca988730a6133
Insert output MAC length (hex digits)

30

Final CMAC:

8398e6153ba580cf3c4254bcdda2f

Figure 52 - CMAC C test file output

89



6. MKA Key Hierarchy HW Implementation

After the conceptual and algorithmic description of the AES and the AES-
CMAC ciphers, of AES KEY WRAP and the software implementation of the
MKA Key Hierarchy, it's possible to illustrate the different hardware

architectures to implement them.

6.1. AES and Key Expansion modules

Concerning the AES encryption algorithm, the attention must be focused to
the SubBytes() transformation which is the most expensive step of the whole
AES cipher in terms of resources and presents the longest critical path (see
Sec. 3.1.1). The byte substitution is performed by the S-box which is byte
oriented, so to substitute the whole State (128-bit), 16 instances of the S-box
are needed: 16 S-boxes can be used in parallel in one time or less S-boxes in
more than one time (e.g. 4 S-boxes in 4 times). The S-box hardware
implementation is critical because of the computation of the multiplicative
inverse of a byte on the Galois field GF(2°): as the same Rijndael cipher’s
authors and the NIST indicate, it the Extended Euclidean algorithm should be
used. This procedure is very expensive in terms of hardware delay because it
requires the integer division, which is a serial operation. As the literature
suggests " there are two usual implementations of the S-box: one based on
the lookup tables, or memory supports like the dedicated RAM or ROM
blocks on an FPGA, or one based on the Galois composite fields. The

chosen solution is the fist one.

The LUT (Look-Up Table)-based implementation of the S-box simply consists
in storing and arranging appropriately the output values of the S-box in

relation to all possible values of the input data, that is the byte to be
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substituted. As already hinted in Sec. 3.1.1, the results is a 256 bytes table
arranged as a 16 x 16 matrix in which the most significant nibble of the input
byte selects the matrix row, while the least significant nibble of the input bytes
selects the matrix column. This solution is widely diffused because its
implementation requires a very few effort and it brings to a significant gain in
terms of maximum achievable frequency. Anyway it can be almost expensive
in terms of area consumption. The LUT-based S-box is usually employed
when the AES cipher is implemented on an FPGA device, while it's usually

discharged for the ASIC realizations.

Concerning the other AES round transformations, ShiftRows(), MixColumns()
and AddRoundKey(), they do not leave space to any optimization or
significant architectural variation. Focusing on the overall architecture of an
AES cipher, there are many possibilities. The primary aspect concerns the
number of rounds physically implemented. The structure created works with
only one round used iteratively: in this case some multiplexer are needed to
bypass the preliminary AddRoundKey() transformation and the MixColumns()
one in the last round execution and the system is characterized by a low area

consumption, even if with a higher latency.
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|
A

| SubBytes() | N\

| ShiftRows() |

— round

| MixColumns() |

| AddRoundKey() |

ouT

Figure 53 - AES rolled architecture

Lastly some few words can be spent about the key expander (see Sec. 3.2).
The first point faced when projecting this module is the decision of when
perform the key expansion: we chose to perform the expansion before the
encryption, storing all the round keys in appropriate memory supports,
instead of computing the round keys at runtime (or “on the fly”).

In Figure 54 we can see the AES core architecture with a buffer on the output

to store the value.
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AES core FSM 2

AES_core_FSM_state_dec([1:0]
state decoder([1:0] _core_FSM_state_dec[1:0]

AES core FSM state

AES_last_round

AES_start

AES core FSM

AES_round_en

Y 4 4
AES_round_cntr(3:0]
L

4 4
+4'd1

128

Y

o

o

N

S T A9 punoy
8

I\ 7 Aay punoy
§

\—0T A9y punoy

0 A9y punoy

AES_input_data[127:0]

128
128 ; 128
i Mix B ‘i
128 Shift 128, Columns 128 128 AES 2
Sub Bytes Rows 1 buffer[127:0]
1
128
128

Figure 54 - Implemented AES core

Each time that a start signal occurs, the FSM enables the AES core, this one
processes the data block with the help of the counter that drives the
multiplexers and when the encrypted block is ready this is signaled through a
last step signal, while the FSM return to the idle state. The Figure 55 shows

the states map of the AES core.

93



laes_start

aes_round_cntr[3:0] == 4'd9

aes_round_cntr[3:0] < 4'd9

Figure 55 - AES core finite state machine

6.2. CMAC module

The other implemented module is the cmac module. It instantiates the two

previously described modules: aes _core and key _expander.

cmac
— clk aes_core
=t result_ready +——
cmac_start .
384 |
aes_message cmac_out
6
msg_length key_expander
384 :
aes_cipherkey
el OUTPUTS
(@)

key expander Ul (clk, rst_n, cmac_start, aes_cipherkey, aes_out_key, key 1, key 2,
key 3, key 4, key_ 5, key 6, key 7, key 8,
key 9, key 10, key expansion_done);

aes_core U2 (clk, rst_n, key expansion done | aes_start, aes_input, aes_cipherkey,

key 1, key 2, key 3, key 4, key S5, key 6, key 7, key 8,
key 9, key_ 10, aes_last_round, aes_buffer );

(b)

Figure 56 - (a) CMAC block diagram, (b) CMAC instantiated modules in Verilog
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CMAC_IDLE

CMAC_SUB_KEY |

CMAC_CALC

CMAC_OUT

Figure 57 - cmac finite state machine

From the above cmac finite state machine figure, we can understand how the
module is following the AES-CMAC algorithm steps described in rfc4493: the
first step is the sub-key generation algorithm, which creates the two keys K1

and K2 (cmac_sub_key state).
After that, the cmac core algorithm is implemented; the output is given on a

128bit bus together with the result_ready pin (see Figure 56a).

6.3. AES Key Wrap module
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Another module that instantiates the same aes core and key expander
modules as the cmac module, is the key wrap module which implements the

AES Key Wrap algorithm described is Sec. 3.6.

In the following figure we have the key wrap diagram box.

key wra
— e B aes_core

—fwrap start wrap ready p—

key_expander c1 22

Figure 58 - key_wrap block diagram

The output of the wrapping algorithm is given on three buses of 64 bits, as
this is the way it is defined in the rfc3394. As it will be described in the
following mka module (Sec. 6.5), these buses will be merged in a bigger

register for the needed calculations.

The next figure shows the finite state machine of the key wrap module.
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WRAP_IDLE ) Ikey_expansion_done

key_expansion_done

. “

) linit_done

init_done

) 'aes_done

(DD

D

r_calc_done

&
Int_counter< 13

aes_done

'msb_done

msb_done

Ir_calc_done

r_calc_done
&
Int_counter == 13

WRAP_IDLE

Figure 59 - key_wrap finite state machine
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6.4. KDF module

The kdf module implements the key derivation function described in the
802.1X-2010 standard (see Sec. 4.5.2.1.). It implements the cmac module
described in Sec. 6.2 as we can see from the block diagram in the following

figure.

— ckk kdf

cmac

Figure 60 - kdf block diagram

The output is on a 128bit bus, and a kdf _ready pin is present. As described in
the MKA Key Hierarchy algorithm, the kdf module will be started twice to
have the keys ICK and KEK as output.
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Here is the kdf finite state machine.

6.5.

.| «oF_iDLE | ) kdf_st

Iter_done

Iter_counter == ITERATIONS -.;:T'_—‘s
~ >
[
‘ KDF_INIT | iter_part_done
\ e
v
er_done \
| iter_part_done

Figure 61 - kdf finite state machine

MKA module
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The mka module is the top-level module of the MKA Key Hierarchy

implementation.

It implements all the previous mentioned modules, as showed in the following

figure, taken from the Verilog code.

32

32

32

16

48

48

INPUTS

clk

rst_n

mka_start

SAK_part

CAK_part
CKN_part
input_ready

length

src_addr

dst_addr

mka OUTPUTS
clk kdf
rst_n
lsﬂ_r kdf_ready +——
kdf_start
key cmac mka_ready
label
Eontext kdf_out 125 go_output
length
SAK_wrap_out_part
N N ICV_out_part
clk
key_wrap aes_core
rst_n =
wrap_start wrap_ready ——
P co b——
KEK key_expander cp =2
Q —
cmac

clk

rst_n
cmac_start
aes_message

msg_length

— aes_cipherkey

(@)

aes_core

key_expander

result_ready —

cmac_out p——

kdf Ul(clk, rst_n, kdf start, CRK, kdf label, CKN, length , kdf ready, kdf out):

key wrap U2(clk, rst_n, wrap_start, SAK, buffer kek, wrap_ready, CO, Ci, C2 ):;

cmac U3(clk,rst_n,cmac_start, cmac_message, cmac_msg_length, buffer ick, cmac_ready,cmac_out);

(b)

Figure 62 - mka implementing all the modules: (a) block diagram, (b) Verilog code
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| MKA_IDLE | ) 'mia_start

A

M KA_W RA;v N ne
o | MKA_ICK'V B

| MKA_lcv': done

MKA_OUT"

Figure 63 - mka finite state machine

The above mka finite state machine reflects the algorithmic steps of the MKA

Key hierarchy protocol.
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The mka module receives the SAK serially on a 32bit bus: every received
32bit chunks is stored in a 128bit register. This holds also for the CKN and
CAK inputs.

When all the three internal registers, linked to the three input keys, are full
(that is each of the four chunks of every key has been stored), the

input_ready pin is set and the internal state change to MKA_KEK.

This state is responsible if the creation of the KEK: the kdf module is involved
giving it the correct kek label as input.
With the obtained KEK the Key Wrap can be applied to the SAK, which is

stored in the internal SAK register.

After, the ICK is derived and then the related ICV. All the results are stored in
internal registers; at the end, when all the wanted values are ready, the

output is ready and is sending in series on a 32bit bus.

In the following table are showed the relative CPU clock cycles for each

module during the mka module test bench.

Module Clock cycles

cmac 100
key_wrap 246
kdf 95

mka 525

Figure 64 - modules performance in clock cycles

As visible from the above table the most expensive in time is the key wrap
module: to notice that the mka module instantiates all the other modules, in

particular twice the kdf module.
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“. jmka_testbench/dock

4, Jmka_testbenchjrst_n

4. jmka_testhench/mka_start
34, jmka_testbench/CAK
B34 jmka_testbench/CKN

4., Jmka_testbenchfinput_ready
3 4. fmka_testbenchflength
4. /mka_testbench/src_addr

B~ [mka_testbench/dst_addr
4. [mka_testbench/go_output
4. [mka_testbench/ICV
4. [mka_testbench/SAK
B-“. /mka_testbench/SAK_wrapped

Figure 65 - mka wave plot

6.6. FPGA Synthesis

The implemented system, described in Sec. 5, has been synthesized both on
a FPGA Stratix V of Altera and on a 65 nm standard-cell ASIC technology, to
verify the respect of the design constraints (i.e. support of the maximum
frequency of 125MHz) and document the statistics relevant to the area
consumption. Even if the final target is the realization of an ASIC device, the
synthesis on FPGA have been necessary to confirm that the implemented

system was able to be used on the FPGA demo board.

The TX MACsec and RX MACsec modules have been synthesized on the
FPGA Stratix V 5SGXMABK3H40C4 of Altera, using the Altera software
Quartus Il (version 14.1). The selected device is an high performance and
high size FPGA realized through the 28-nm TSMC process technology and
has logic cores supplied with 0.9 V or 0.85 V. The programmable logic cores
are called ALM (adaptive logic module) and they implement LUT-based logic
functions. Each ALM contains a variety of LUT-based resources that can be
divided between two combinational adaptive LUTs (ALUTs) and four

registers, as it is depicted in Figure 66.
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shared_arith_in carry_in

Combinational/ labclk
Memory ALUTO
dataf0 ——|
datac_| | EMPUELUT adder0 ™ —‘;D—b
dataa —— reg0
datab——
regl To General or
datac— | Local Routing
datad —— adder1 ™ }
datael —— G-Input LUT]| )
reg2
datafl ——
Combinational/
Memory ALUTL B —\;D_>
v v j
shared_arith_out carry_out reg3

Figure 66 - ALM high-level block diagram for Stratix V devices

Furthermore a Stratix V device is provided with embedded block dedicated to

specific functionalities, as DSP blocks or M20K memory blocks.

For the synthesis they have been specified the following constraints:

- clock period = 8 ns (corresponding to the frequency of 125 MHz);

The synthesis results are reported in the following table.
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Compiler Logic utilization Total Total Max

Optimization mode  (ALMs) Registers pins Frequency

@ 85C
BALANCED 11477/359200 (3%) 9938 278/864 135,26 MHz

Figure 67 - FPGA synthesis results

6.7. Synthesis on standard-cell ASIC technology

The mka module has been synthesized also on a 65 nm standard-cell
technology, using again a clock period of 8 ns as constraint: the following
table reports the statistics related to the area occupation (in kgates) and to

the frequency that the module can support.

‘ Module Frequency Area occupancy (kgate)
mka 125 MHz 102,38

Figure 68 — standard-cell ASIC technology synthesis
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7. Conclusions

This work entered Renesas project flow, which goal is to secure the next
generation Ethernet networks that will replace the heterogeneous network

automotive environment present nowadays.

The realized system has been integrated as the above layer of the MACsec
message exchange protocol developed by Renesas’ security team.

Compliant with IEEE 802.1X-2010 standard, it is able to supply the essential
security keying material for the whole MACsec protocol, which will add

security services to the automotive area Ethernet networks.

The synthetized modules fit the company’s requirements in order of area
occupancy and latency.

All these aspects makes the realized system a good entry point for the
security requirements of the automotive field and to create a MACsec module
which is fully compliant with the IEEE 802.1AE standard.
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