

DEPARTMENT OF INFORMATION ENGINEERING

MASTER DEGREE

IN COMPUTER ENGINEERING

DESIGN AND IMPLEMENTATION OF A KEY
DERIVATION MODULE COMPLIANT WITH THE IEEE

802.1X-2010 KEY HIERARCHY

Candidate: Relators:

Pacini Diego Prof. Luca Fanucci

Prof. Gianluca Dini

Ing. Berardino Carnevale

Academic Year 2013/2014

 ii

 iii

Abstract

Nowadays the automotive environment is more and more characterized by

several IT applications: from infotainment systems to C2C (Car to Car) or

C2X (Car to external) solutions, as LTE or Wi-Fi connections. This, together

with engine and other components controls systems, reflects on many

different internal and external networks, which can be found inside a car.

Carmakers are going in the direction of replacing much of these networks by

Ethernet networks, to achieve more throughput in order to satisfy clients’

expectations.

This work is placed in the context of the deployment of a security module for

the automotive requirements compatible with the Ethernet standard,

managed by the security team of Renesas Electronics Europe GmbH, one of

the world’s biggest microcontrollers manufacturer.

After a deep analysis of the main degrees of freedom in the project

workspace, a hardware component has been implemented, which acts as

accelerator for encryption keys generation, compliant with the MKA Key

Hierarchy protocol in the 802.1X-2010 standard.

A testing phase has followed to validate the implemented MKA KH core by an

algorithmic point of view: for this purpose, with the help of the official National

Institute of Standards and Technology (NIST) test vectors, a Java software

has been realized, which generates the required encryption keys compliant

with the MKA KH algorithm.

Then the compliancy with respect to the IEEE 802.1AE standard and the full

integration inside the MAC IP has been verified.

The realized system has been synthesized both on a FPGA Stratix V of

Altera and on a 65ηm standard-cell ASIC technology: the system shows an

 iv

occupation of 9938 registers and 11477 ALMs on the FPGA and

102,38kgates on the standard-cell technology. The maximum reachable

throughput at 125MHz is 1Gbps.

 v

Contents

Abstract ... iii	

Contents ... v	

Figures Index .. viii	

1.	
 Security in automotive ... 1	

1.1.	
 Introduction ... 1	

1.2.	
 How secure is your car? .. 3	

1.3.	
 Ethernet backbone in cars .. 6	

2.	
 Automotive and cryptography ... 9	

2.1.	
 Symmetric Cryptography .. 11	

2.2.	
 Operation modes .. 11	

2.2.1.	
 Stream ciphers .. 12	

2.2.2.	
 Block ciphers ... 12	

2.2.2.1.	
 ECB – Electronic CodeBook ... 13	

2.2.2.2.	
 CBC – Cipher Block Chaining .. 14	

2.2.2.3.	
 CFB – Cipher FeedBack ... 16	

2.2.2.4.	
 OFB – Output FeedBack ... 19	

2.2.2.5.	
 CTR – Counter .. 22	

2.2.3.	
 Stream vs Block Ciphers ... 25	

2.3.	
 Possible attacks ... 26	

2.3.1.	
 Exhaustive key search ... 26	

2.3.2.	
 Data exhaustive analysis ... 27	

2.3.3.	
 Cryptanalysis ... 28	

2.4.	
 Computational security ... 28	

2.5.	
 Attacks in automotive systems ... 28	

3.	
 AES cipher .. 32	

3.1.	
 AES encryption algorithm ... 34	

3.1.1.	
 SubBytes() Transformation ... 36	

3.1.2.	
 ShiftRows() Transformation ... 38	

3.1.3.	
 MixClolumns() Transformation .. 39	

3.1.4.	
 AddRoundKey() Transformation ... 41	

3.2.	
 Key Expansion algorithm .. 42	

 vi

3.3.	
 AES Inverse cipher ... 44	

3.4.	
 AES operation modes .. 44	

3.5.	
 AES – CMAC ... 45	

3.5.1.1.	
 Subkey generation algorithm .. 47	

3.5.1.2.	
 MAC generation algorithm .. 48	

3.5.1.3.	
 Security considerations ... 52	

3.6.	
 AES Key Wrap algorithm ... 52	

4.	
 MAC Security (MACsec) .. 55	

4.1.	
 Introduction ... 55	

4.2.	
 About MACsec ... 56	

4.2.1.	
 MACsec Benefits ... 56	

4.2.2.	
 MACsec limitations ... 57	

4.3.	
 802.1X without MACsec ... 58	

4.4.	
 802.1X-2010 ... 59	

4.4.1.	
 Secure communication ... 61	

4.4.2.	
 Components and Protocols ... 62	

4.5.	
 MACsec Sequence .. 64	

4.5.1.	
 Authentication and Master Key distribution .. 65	

4.5.2.	
 Session key agreement (MKA) ... 66	

4.5.2.1.	
 KDF (Key Derivation Function) ... 67	

4.5.2.2.	
 MKA transport ... 69	

4.5.2.3.	
 EAPoL .. 70	

4.5.2.4.	
 SAK generation ... 73	

4.5.2.5.	
 CAK derivation .. 75	

4.5.2.6.	
 ICK derivation .. 76	

4.5.2.7.	
 KEK derivation .. 77	

4.5.2.8.	
 Message authentication ... 77	

5.	
 MKA Key Hierarchy SW Implementation .. 79	

5.1.	
 Java implementation .. 79	

5.1.1.	
 AES – CMAC ... 80	

5.1.1.1.	
 Cipher.class ... 80	

5.1.1.2.	
 Results ... 84	

5.1.1.3.	
 Applet Java and Web Server .. 84	

5.1.2.	
 Results and performance ... 86	

5.2.	
 C implementation .. 88	

 vii

6.	
 MKA Key Hierarchy HW Implementation .. 90	

6.1.	
 AES and Key Expansion modules .. 90	

6.2.	
 CMAC module ... 94	

6.3.	
 AES Key Wrap module ... 95	

6.4.	
 KDF module .. 98	

6.5.	
 MKA module ... 99	

6.6.	
 FPGA Synthesis ... 103	

6.7.	
 Synthesis on standard-cell ASIC technology .. 105	

7.	
 Conclusions .. 106	

Bibliography .. 108	

 viii

Figures Index

Figure 1 – Automotive ECUs Controllers by 2020 ... 2

Figure 2 - Hackablity results: A plus sign represents “more hackable,” a minus sign “less

hackable.” .. 5

Figure 3 - In-Car Networking Scenario .. 8

Figure 4 - Symmetric vs Asymmetric Cryptography .. 10

Figure 5 - Stream cipher general schema ... 12

Figure 6 - ECB mode schema ... 13

Figure 7 - ECB equations .. 13

Figure 8 - CBC mode schema ... 14

Figure 9 - CBC equations .. 14

Figure 10 - CFB Encryption ... 16

Figure 11 - CFB Decryption ... 16

Figure 12 - CFB Mode ... 18

Figure 13 - OFB Encryption ... 19

Figure 14 - OFB Decryption ... 20

Figure 15 - OFB Mode ... 21

Figure 16 - CTR Encryption ... 23

Figure 17 - CTR Decryption ... 23

Figure 18 - CTR Mode ... 24

Figure 19 - number of pairs to avoid false positive .. 27

Figure 20 - An example of car attack ... 30

Figure 21 - AES scheme .. 33

Figure 22 - State array input and output .. 34

Figure 23 - AES cipher suite .. 35

Figure 24 - SubBytes() applies the S-box to each byte of the State 37

Figure 25 - S-box: substitution values for the byte xy (Hex format) 37

Figure 26 - ShiftRows() cyclically shifts the last three rows in the State 39

Figure 27 - MixColumns() operates on the State column-by-column 40

Figure 28 - AddRoundKey() XORs each column of the State with a word from the key

schedule .. 41

Figure 29 - Key Expansion pseudo code ... 43

Figure 30 - Two cases of AES-CMAC ... 46

 ix

Figure 31 - CMAC generate_subkey() pseudo code ... 47

Figure 32 - AES-CMAC pseudo code .. 50

Figure 33 - AES Key Wrap pseudo code ... 53

Figure 34 - 802.1X and MACsec ... 56

Figure 35 - MACsec hop-by-hop basis .. 57

Figure 36 - 802.1X behavior prior to authentication without MACsec 58

Figure 37 - 802.1X behavior after authentication without MACsec 59

Figure 38 - MACsec enabled port .. 60

Figure 39 - Secure communication scenario ... 62

Figure 40 - MACsec components and protocols .. 63

Figure 41 - High Level 802.1X and MACsec sequence ... 65

Figure 42 - MKA key hierarchy .. 67

Figure 43 - KDF pseudo code .. 68

Figure 44 - EAPoL architecture ... 70

Figure 45 - EAPoL frame format .. 71

Figure 46 - EAPOL - MKA packet body with MKPDU format .. 73

Figure 47 - CMAC Java sample output .. 80

Figure 48 - CMACalculator homepage .. 84

Figure 49 - Java SW flow ... 86

Figure 50 - MKA Key hierarchy Java performance .. 87

Figure 51 - Aes C usage .. 88

Figure 52 - CMAC C test file output ... 89

Figure 53 - AES rolled architecture .. 92

Figure 54 - Implemented AES core ... 93

Figure 55 - AES core finite state machine ... 94

Figure 56 - (a) CMAC block diagram, (b) CMAC instantiated modules in Verilog 94

Figure 57 - cmac finite state machine .. 95

Figure 58 - key_wrap block diagram .. 96

Figure 59 - key_wrap finite state machine ... 97

Figure 60 - kdf block diagram .. 98

Figure 61 - kdf finite state machine .. 99

Figure 62 - mka implementing all the modules: (a) block diagram, (b) Verilog code 100

Figure 63 - mka finite state machine .. 101

Figure 64 - modules performance in clock cycles .. 102

 x

Figure 65 - mka wave plot ... 103

Figure 66 - ALM high-level block diagram for Stratix V devices 104

Figure 67 - FPGA synthesis results ... 105

Figure 68 – standard-cell ASIC technology syntesis ... 105

 xi

1

1. Security in automotive

1.1. Introduction

With the following dissertation I would like to focus on IT security, in particular

on security related to the automotive field. Over the last two decades vehicles

have silently but dramatically changed into mobile interactive systems already

carrying dozens of digital microprocessors, various external radio interfaces,

and several hundred megabytes of embedded software. In fact, information

and communication technology is the driving force behind most innovations in

the automotive industry, with perhaps 90% of all innovations in vehicles

based on digital IT systems.

Todays in-vehicle IT architectures are dominated by a large network of

interactive, software driven digital microprocessors called electronic control

units (ECU). However, ECUs relying on information received from open

communication channels created by other ECUs or even other vehicles that

are not under its control, leaves the doors wide open for manipulations or

misuse.

Future cars will become even more dependent on IT security due to the

following developments:

• It is predicted that an increasing number of ECUs (electronic control

units) will be reprogrammable, a process that must be protected.

• Many cars will communicate with the environment in a wireless fashion,

which makes strong security a necessity.

• New business models (e.g., time-limited flash images or pay-per-use

infotainment content) will become possible for the car industry, but will

only be successful if abuse can be prevented.

2

• There will be an increasing number of legislative demands which can

only be solved by means of modern IT security functions, such as

tamper- resistant tachographs, secure emergency call functions, secure

road billing etc.

• Increasing networking of cars will allow the collection of data for each

driver (e.g., driving behavior, locations visited), which will put high

demands on privacy technology.

• Future cars will often be personalized, which requires a secure

identification of the driver.

• Electronic anti-theft measures will go beyond current immobilizers, e.g.,

by protecting individual components.

…and many others…

Figure 1 – Automotive ECUs Controllers by 2020

3

This “digital revolution” enables very sophisticated solutions considerably

increasing flexibility, safety and efficiency of modern vehicles. It further helps

saving fuel, weight, and costs.

Whereas in-vehicle IT safety (i.e., protection against [random] technical

failures) is already a relatively well-established (if not necessarily well-

understood) field, the protection of vehicular IT systems against systematic

manipulations has only very recently started to emerge. In fact, automotive IT

systems were never designed with security in mind. But with the increasing

application of digital software and various radio interfaces to the outside world

(including the Internet), modern vehicles are becoming even more vulnerable

to all kinds of malicious encroachments like hackers or malware. This is

especially noteworthy, since in contrast to most other IT systems, a

successful malicious encroachment on a vehicle will not only endanger

critical services or business models, but can also endanger human lives.

Thus strong security measures should be mandatory when developing

vehicular IT systems. Today most vehicle manufacturer (hopefully)

incorporates security as a design requirement. However, realizing

dependable IT security solutions in a vehicular environment considerably

differs from realizing IT security for typical desktop or server environments. In

a typical vehicular attack scenario an attacker, for instance, has extended

attack possibilities (i.e., insider attacks, offline attacks, physical attacks) and

could have many different attack incentives and attack points (e.g.,

tachometer manipulations by the vehicle owner vs. theft of the vehicle

components vs. industrial espionage).

1.2. How secure is your car?

In a talk at the Black Hat security conference in Las Vegas [i], Charlie Miller

and Chris Valasek presented the results of a broad analysis of dozens of

4

different car makes and models, assessing the vehicles’ schematics for the

signs that hint at vulnerabilities to auto-focused hackers. The result is a kind

of handbook of ratings and reviews of automobiles for the potential

hackability of their networked components.

They examined how a remote attack might work on 24 different cars.

“It really depends on the architecture: If you hack the radio, can you send

messages to the brakes or the steering? And if you can, what can you do with

them?” said Valasek, director of vehicle security research at the security

consultancy IOActive.

In the two researchers’ analysis, three vehicles were ranked as “most

hackable”: the 2014 models of the Infiniti Q50 and Jeep Cherokee and the

2015 model of the Cadillac Escalade. The full results, summarized in the

chart below, show that the 2010 and 2014 Toyota Prius didn’t fare well either.

5

Figure 2 - Hackablity results: A plus sign represents “more hackable,” a minus sign “less hackable.”

All the cars’ ratings were based on three factors: the first was the size of their

wireless “attack surface”—features like Bluetooth, Wi-Fi, cellular network

connections, keyless entry systems, and even radio-readable tire pressure

monitoring systems. Any of those radio connections could potentially be used

by a hacker to find a security vulnerability and gain an initial foothold onto a

car’s network. Second, they examined the vehicles’ network architecture, how

much access those possible footholds offered to more critical systems

steering and brakes. And third, Miller and Valasek assessed what they call

the cars’ “cyberphysical” features: capabilities like automated braking, parking

6

and lane assist that could transform a few spoofed digital commands into an

actual out-of-control car.

Miller and Valasek say that within the Infinity Q50’s network, those radio and

telematic components were directly connected to engine and braking

systems. And the sedan’s critical driving systems had computer-controlled

features like adaptive cruise control and adaptive steering that a hacker could

potentially hijack to physically manipulate the car.

The researchers pointed to Audi’s A8, by contrast, as an example of a strong

network layout. Its wireless features were separated from its driving functions

on its internal network, with a gateway that would block commands sent to

steering or brakes from any compromised radios.

1.3. Ethernet backbone in cars

In the late period we are moving in the direction where proprietary

technologies in the automotive field, especially in transmission’s physical

layer, will be replaced with standard ones.

My thesis has been developed in cooperation with Renesas Electronics

Corporation, one of the world's largest makers of semiconductor systems for

mobile phones and automotive applications.

Starting from leading chip companies as Broadcom and Renesas, they think

carmakers are coming around at last to the wisdom of leveraging standard

technologies such as Ethernet, already well proven outside the car marketii.

Carmakers nowadays, and I would say people in general, are paying more

attention to electronic devices and the innovation they are carrying with,

instead of a car’s horsepower. They need to make sure their cars can

7

accommodate everything, from a navigation system to displays and other

gadgets that consumers use inside a car. And this is true not only for high-

level cars.

Inside a car today there are many independents networks. Each automotive

network technology such as low-voltage differential signaling (LVDS), media-

oriented systems transport (MOST), and the controller area network (CAN), is

connected to different electronics. They don't interoperate. We think Ethernet

will replace these networks in some years.

Think about our smartphones, tablets and notebooks; our quality

expectations are higher and higher. Would we be satisfied with a delay

suffering black/white low-resolution rear camera in our car? And it’s quite

normal today to think about LTE networks inside cars. That’s why the

bandwidth needed for in-car networking grows exponentially. And scalability

is another important feature carmakers are interested in; in fact they are

increasingly looking to OPEN Alliance SIG, an open industry consortium

designed to encourage wide-scale adoption of Ethernet-based networks as

the standard in automotive networking applications, partner of Renesas as

well.

8

Figure 3 - In-Car Networking Scenario

As we can see from Figure 3 the expectations in the next few years are about

Ethernet to coexist with low-bandwidth standards like CAN.

The backbone however will be Ethernet-driven. The CAN, MOST, LIN and

others will continue to exist on a small-scale basis, but Ethernet will drive the

majority of the work. We need a security solution to protect Ethernet

connections inside the car environment.

After a general overview of cryptography and encryption algorithms, in Sec. 2

I will deal with MACsec, a security protocol for Ethernet networks.

 2012 2020

Engine control Mix of high speed CAN
network & Flexary

Mix of high speed CAN
network & Ethernet/IP Transmission

Traction control

Suspension control CAN network & Flexary CAN, Flexary and
Ethernet/IP Breaking control

Active Safety

Passive Safety

Camera-based ADAS LVDS >> Ethernet/IP (2013) Ethernet/IP

Windows CAN & LIN CAN & LIN
HVAC & comfort

Lighting

Door and seats

AV entertainment CAN + MOST CAN + MOST + Ethernet/IP
Device integration

OBDX CAN & Ethernet/IP Ethernet/IP

9

2. Automotive and cryptography

Even though security depends on much more than just cryptographic

algorithms – a robust overall security design including secure protocols and

organizational measures are needed as well – crypto schemes are in most

cases the atomic building blocks of a security solution. The problem in

embedded applications is that they tend to be computationally and memory

constrained due to cost reasons. (Often they are also power limited, but,

since automotive applications are often powered by their own battery, low-

power crypto is not such an important topic in the car context).

So the main goal is to implement secure crypto algorithms on small devices

at acceptable running times.

Crypto schemes are divided into two families: symmetric and asymmetric

algorithms. The first group is mainly used for data encryption and message

integrity checks. Symmetric algorithms tend to run relatively fast and often

need little memory resources. There exists a wealth of established

algorithms, with the most prominent representatives being the block ciphers

DES (Data Encryption Standard) and AES (Advanced Encryption Standard).

The family of stream ciphers, as we will see later, can be even more efficient

than block ciphers and are, thus, sometimes preferred for embedded

applications. In almost all cases it is a wise choice to use established, proven

algorithms rather than unproven or self-developed ones.

10

Figure 4 - Symmetric vs Asymmetric Cryptography

The second family of schemes, asymmetric or public-key algorithms, is very

different. They are based on hard number theoretical problems and involve

complex mathematical computations with very long numbers, commonly in

the range of 160–4048 bits, depending on the algorithm and security level.

Their advantage, however, is that they offer advanced functions such as

digital signatures and key distribution over unsecure channels. For common

automotive applications such as secure flashing, public-key algorithms are

often preferred. The problem here is the computational requirement of public-

key schemes. Embedded processors in the automotive domain are often only

equipped with 8-bit and 16-bit processors clocked at moderate frequencies

of, say, below 10 MHz. Running computationally expensive public-key

algorithms on such processors can result in unacceptably long execution

times, for instance several seconds for the generation of a digital signature.

For this reason, it is very important that a smart parameter choice together

with the latest implementation techniques are being employed.

11

2.1. Symmetric Cryptography

Symmetric-key algorithms are algorithms for cryptography that use the same

cryptographic keys for both encryption of plaintext and decryption of

ciphertext. The keys may be identical or there may be a simple

transformation to go between the two keys.

∀p∈ P,k ∈ K :D(k,E(k, p)) = p

Figure 5 - Symmetric Key formal definition

In Figure 5 we can see the characterized equation of the symmetric

cryptography, where p is the plaintext belonging to the plaintext space P, c is

the ciphertext belonging to the ciphertext space C and k is the shared secret

key belonging to the key space K.

The keys, in practice, represent a shared secret between two or more parties

that can be used to maintain a private information link. This requirement that

both parties have access to the secret key is one of the main drawbacks of

symmetric key encryption, in comparison to public-key encryption.

2.2. Operation modes

Symmetric cryptography can be implemented using either Stream ciphers or

Block ciphers.

12

2.2.1. Stream ciphers

With stream ciphers plaintext digits are combined with a pseudorandom

cipher digit stream (keystream). In a stream cipher each plaintext digit is

encrypted one at a time with the corresponding digit of the keystream, to give

a digit of the ciphertext stream.

Figure 5 - Stream cipher general schema

2.2.2. Block ciphers

Block ciphers can operate into different modes:

• ECB (Electronic CodeBook)

• CBC (Cipher Block Chaining)

• CFB (Cipher FeedBack)

• OFB (Output FeedBack)

• CTR (Counter)

In the following sections all these modes are described in detail [iii].

13

2.2.2.1. ECB – Electronic CodeBook

The Electronic Codebook (ECB) mode is a confidentiality mode that features,

for a given key, the assignment of a fixed ciphertext block to each plaintext

block, analogous to the assignment of code words in a codebook. The

Electronic Codebook (ECB) mode is defined as follows:

Figure 6 - ECB mode schema

Ci = Ek (Pi)
Pi = Dk (Ci)
!
"
#

Figure 7 - ECB equations

In ECB encryption and ECB decryption, multiple forward cipher functions and

inverse cipher functions can be computed in parallel.

In ECB redundancies can be present, since same plaintext blocks will have

the same ciphertext. This will bring the algorithm subjected to attacks of

cryptanalysis.

14

With ECB we don’t have error propagation, i.e. if one block is received

corrupted no other block will suffer for the error.

2.2.2.2. CBC – Cipher Block Chaining

The Cipher Block Chaining (CBC) mode is a confidentiality mode whose

encryption process features the combining (“chaining”) of the plaintext blocks

with the previous ciphertext blocks. The CBC mode requires an IV to combine

with the first plaintext block (Figure 9). The IV need not be secret, but it must

be unpredictable. Also, the integrity of the IV should be protected. The CBC

mode is defined as follows:

Figure 8 - CBC mode schema

Ci = Ek (Pi ⊕Ci−1)
Pi =Ci−1⊕Dk (Ci)
C0 = IV

#

$
%

&
%

Figure 9 - CBC equations

15

In CBC encryption, the first input block is formed by exclusive-ORing the first

block of the plaintext with the IV. The forward cipher function is applied to the

first input block, and the resulting output block is the first block of the

ciphertext. This output block is also exclusive-ORed with the second plaintext

data block to produce the second input block, and the forward cipher function

is applied to produce the second output block. This output block, which is the

second ciphertext block, is exclusive-ORed with the next plaintext block to

form the next input block. Each successive plaintext block is exclusive-ORed

with the previous output/ciphertext block to produce the new input block. The

forward cipher function is applied to each input block to produce the

ciphertext block.

In CBC decryption, the inverse cipher function is applied to the first ciphertext

block, and the resulting output block is exclusive-ORed with the initialization

vector to recover the first plaintext block. The inverse cipher function is also

applied to the second ciphertext block, and the resulting output block is

exclusive-ORed with the first ciphertext block to recover the second plaintext

block. In general, to recover any plaintext block (except the first), the inverse

cipher function is applied to the corresponding ciphertext block, and the

resulting block is exclusive-ORed with the previous ciphertext block.

In CBC encryption, the input block to each forward cipher operation (except

the first) depends on the result of the previous forward cipher operation, so

the forward cipher operations cannot be performed in parallel. In CBC

decryption, however, the input blocks for the inverse cipher function, i.e., the

ciphertext blocks, are immediately available, so that multiple inverse cipher

operations can be performed in parallel.

16

2.2.2.3. CFB – Cipher FeedBack

The Cipher Feedback (CFB) mode is a confidentiality mode that features the

feedback of successive ciphertext segments into the input blocks of the

forward cipher to generate output blocks that are exclusive-ORed with the

plaintext to produce the ciphertext, and vice versa. The CFB mode requires

an IV as the initial input block. The IV need not be secret, but it must be

unpredictable.

The CFB mode also requires an integer parameter, denoted s, such that 1 ≤ s

≤ b. In the specification of the CFB mode below, each plaintext segment (P#
j)

and ciphertext segment (C#
j) consists of s bits. The value of s is sometimes

incorporated into the name of the mode, e.g., the 1-bit CFB mode, the 8-bit

CFB mode, the 64-bit CFB mode, or the 128-bit CFB mode.

The CFB mode is defined as follows:

I1 = IV
I j = LSBb−s (I j−1) |C

#
j−1

Oj = EK (I j)

C#
j = P

#
j ⊕MSBs (Oj)

#

$

%
%

&

%
%

Figure 10 - CFB Encryption

I1 = IV
I j = LSBb−s (I j−1) |C

#
j−1

Oj = EK (I j)

P#
j =C

#
j ⊕MSBs (Oj)

#

$

%
%

&

%
%

Figure 11 - CFB Decryption

For j=2…n

For j=1,2…n

For j=1,2…n

For j=2…n

For j=1,2…n

For j=1,2…n

17

In CFB encryption, the first input block is the IV, and the forward cipher

operation is applied to the IV to produce the first output block. The first

ciphertext segment is produced by exclusive-ORing the first plaintext

segment with the s most significant bits of the first output block. (The

remaining b-s bits of the first output block are discarded.) The b-s least

significant bits of the IV are then concatenated with the s bits of the first

ciphertext segment to form the second input block. An alternative description

of the formation of the second input block is that the bits of the first input

block circularly shift s positions to the left, and then the ciphertext segment

replaces the s least significant bits of the result.

The process is repeated with the successive input blocks until a ciphertext

segment is produced from every plaintext segment. In general, each

successive input block is enciphered to produce an output block. The s most

significant bits of each output block are exclusive-ORed with the

corresponding plaintext segment to form a ciphertext segment. Each

ciphertext segment (except the last one) is “fed back” into the previous input

block, as described above, to form a new input block. The feedback can be

described in terms of the individual bits in the strings as follows: if i1i2…ib is

the jth input block, and c1c2…cS is the jth ciphertext segment, then the (j+1)th

input block is is+1is+2…ib c1c2…cS.

The CFB mode is illustrated in Figure 12.

18

Figure 12 - CFB Mode

In CFB decryption, the IV is the first input block, and each successive input

block is formed as in CFB encryption, by concatenating the b-s least

significant bits of the previous input block with the s most significant bits of

the previous ciphertext. The forward cipher function is applied to each input

block to produce the output blocks. The s most significant bits of the output

blocks are exclusive-ORed with the corresponding ciphertext segments to

recover the plaintext segments.

In CFB encryption, like CBC encryption, the input block to each forward

cipher function (except the first) depends on the result of the previous forward

cipher function; therefore, multiple forward cipher operations cannot be

performed in parallel. In CFB decryption, the required forward cipher

19

operations can be performed in parallel if the input blocks are first

constructed (in series) from the IV and the ciphertext.

2.2.2.4. OFB – Output FeedBack

The Output Feedback (OFB) mode is a confidentiality mode that features the

iteration of the forward cipher on an IV to generate a sequence of output

blocks that are exclusive-ORed with the plaintext to produce the ciphertext,

and vice versa. The OFB mode requires that the IV is a nonce, i.e., the IV

must be unique for each execution of the mode under the given key; the

generation of such IVs is discussed in Appendix C. The OFB mode is defined

as follows:

I1 = IV
I j =Oj−1

Oj = EK (I j)

C j = P j ⊕Oj

C*
n = P

*
n ⊕MSBu(On)

#

$

%
%
%

&

%
%
%

Figure 13 - OFB Encryption

For j=2…n

For j=1,2…n

For j=1,2…n-1

20

I1 = IV
I j =Oj−1

Oj = EK (I j)

P j =C j ⊕Oj

P*n =C
*
n ⊕MSBu(On)

#

$

%
%
%

&

%
%
%

Figure 14 - OFB Decryption

In OFB encryption, the IV is transformed by the forward cipher function to

produce the first output block. The first output block is exclusive-ORed with

the first plaintext block to produce the first ciphertext block. The forward

cipher function is then invoked on the first output block to produce the second

output block. The second output block is exclusive-ORed with the second

plaintext block to produce the second ciphertext block, and the forward cipher

function is invoked on the second output block to produce the third output

block. Thus, the successive output blocks are produced from applying the

forward cipher function to the previous output blocks, and the output blocks

are exclusive-ORed with the corresponding plaintext blocks to produce the

ciphertext blocks. For the last block, which may be a partial block of u bits,

the most significant u bits of the last output block are used for the exclusive-

OR operation; the remaining b-u bits of the last output block are discarded.

For j=2…n

For j=1,2…n

For j=1,2…n-1

21

Figure 15 - OFB Mode

In OFB decryption, the IV is transformed by the forward cipher function to

produce the first output block. The first output block is exclusive-ORed with

the first ciphertext block to recover the first plaintext block. The first output

block is then transformed by the forward cipher function to produce the

second output block. The second output block is exclusive-ORed with the

second ciphertext block to produce the second plaintext block, and the

second output block is also transformed by the forward cipher function to

produce the third output block. Thus, the successive output blocks are

produced from applying the forward cipher function to the previous output

blocks, and the output blocks are exclusive-ORed with the corresponding

ciphertext blocks to recover the plaintext blocks. For the last block, which

may be a partial block of u bits, the most significant u bits of the last output

22

block are used for the exclusive-OR operation; the remaining b-u bits of the

last output block are discarded.

In both OFB encryption and OFB decryption, each forward cipher function

(except the first) depends on the results of the previous forward cipher

function; therefore, multiple forward cipher functions cannot be performed in

parallel. However, if the IV is known, the output blocks can be generated prior

to the availability of the plaintext or ciphertext data.

The OFB mode requires a unique IV for every message that is ever

encrypted under the given key. If, contrary to this requirement, the same IV is

used for the encryption of more than one message, then the confidentiality of

those messages may be compromised. In particular, if a plaintext block of

any of these messages is known, say, the jth plaintext block, then the jth

output of the forward cipher function can be determined easily from the jth

ciphertext block of the message. This information allows the jth plaintext block

of any other message that is encrypted using the same IV to be easily

recovered from the jth ciphertext block of that message.

Confidentiality may similarly be compromised if any of the input blocks to the

forward cipher function for the encryption of a message is designated as the

IV for the encryption of another message under the given key.

The OFB mode is illustrated in Figure 15.

2.2.2.5. CTR – Counter

The Counter (CTR) mode is a confidentiality mode that features the

application of the forward cipher to a set of input blocks, called counters, to

produce a sequence of output blocks that are exclusive-ORed with the

plaintext to produce the ciphertext, and vice versa. The sequence of counters

must have the property that each block in the sequence is different from

every other block. This condition is not restricted to a single message: across

23

all of the messages that are encrypted under the given key, all of the

counters must be distinct. In this recommendation, the counters for a given

message are denoted T1, T2, … , Tn. Given a sequence of counters, T1, T2, …

, Tn, the CTR mode is defined as follows:

Oj = EK (Tj)

C j = P j ⊕Oj

C*
n = P

*
n ⊕MSBu(On)

"

#
$

%
$

Figure 16 - CTR Encryption

Oj = EK (Tj)

P j =C j ⊕Oj

P*n =C
*
n ⊕MSBu(On)

"

#
$

%
$

Figure 17 - CTR Decryption

In CTR encryption, the forward cipher function is invoked on each counter

block, and the resulting output blocks are exclusive-ORed with the

corresponding plaintext blocks to produce the ciphertext blocks. For the last

block, which may be a partial block of u bits, the most significant u bits of the

last output block are used for the exclusive-OR operation; the remaining b-u

bits of the last output block are discarded.

In CTR decryption, the forward cipher function is invoked on each counter

block, and the resulting output blocks are exclusive-ORed with the

corresponding ciphertext blocks to recover the plaintext blocks. For the last

block, which may be a partial block of u bits, the most significant u bits of the

For j=1,2…n

For j=1,2…n-1

For j=1,2…n

For j=1,2…n-1

24

last output block are used for the exclusive-OR operation; the remaining b-u

bits of the last output block are discarded.

In both CTR encryption and CTR decryption, the forward cipher functions can

be performed in parallel; similarly, the plaintext block that corresponds to any

particular ciphertext block can be recovered independently from the other

plaintext blocks if the corresponding counter block can be determined.

Moreover, the forward cipher functions can be applied to the counters prior to

the availability of the plaintext or ciphertext data.

CTR mode is illustrated in Figure 18.

Figure 18 - CTR Mode

25

2.2.3. Stream vs Block Ciphers

Stream ciphers are typically faster than block, but that has it's own price.

Block ciphers typically require more memory, since they work on larger

chunks of data and often have "carry over" from previous blocks, whereas

since stream ciphers work on only a few bits at a time they have relatively low

memory requirements (and therefore cheaper to implement in limited

scenarios such as embedded devices, firmware, and esp. hardware).

Stream ciphers are more difficult to implement correctly, and prone to

weaknesses based on usage and the keystream has very strict requirements.

Because block ciphers encrypt a whole block at a time (and furthermore have

"feedback" modes which are most recommended), they are more susceptible

to noise in transmission, that is if you mess up one part of the data, all the

rest is probably unrecoverable. Whereas with stream ciphers bytes are

individually encrypted with no connection to other chunks of data (in most

ciphers/modes), and often have support for interruptions on the line.

Also, stream ciphers do not provide integrity protection or authentication,

whereas some block ciphers (depending on mode) can provide integrity

protection, in addition to confidentiality.

Because of all the above, stream ciphers are usually best for cases where the

amount of data is either unknown, or continuous - such as network streams.

Block ciphers, on the other hand, or more useful when the amount of data is

pre-known - such as a file, data fields, or request/response protocols, such as

HTTP where the length of the total message is known already at the

beginning.

This is the main reason why choosing the encryption algorithm we came up

with a symmetric block cipher one.

26

2.3. Possible attacks

The idea of security comes from the need to protect data against malicious

users and relative attacks. Depending on the chosen algorithm, some of

these attacks can be successful or not.

In general the following types of attacks are valid under these hypothesis:

• The adversary has access to all encrypted messages.

• Kerckhoff Hypothesis: the adversary knows all the details of the

encryption function but the secret key.

Here we have a list of possible attacks; they refer to what the malicious user

is in posses during the attack.

Types of attacks:

• Ciphertext-only attack: he (the adversary) has access to the ciphertext

only.

• Known-plaintext attack: he has the ciphertext and the message in clear,

and he’s able to combine them in pairs.

• Chosen-plaintext attack: he can obtain the ciphertexts for arbitrary

plaintexts.

The previous types of attacks characterize all the so-called force brute

attacks.

2.3.1. Exhaustive key search

Exhaustive key search is an example of known-plaintext attack, that can

become a ciphertext-only attack if we have redundancies in the plain text.

27

The adversary has (p , c) pairs and he has to find the key that generates c

from p.

Since the key is on k bit we have 2k possible keys. The exhaustive key

search tells the user to try all the possible keys to check which one can

encrypt the message p on the ciphertext c. The main issue in this approach is

the presence of false positive keys: different keys can encrypt the same

message p into the same ciphertext c, so the found key can be the correct

one for the given message but not for all the others.

The number of pairs (p , c) that we need to avoid false positives is:

J = k + 4
n

!

"
#

$

%
&

Figure 19 - number of pairs to avoid false positive

where k is the key’s number of bits and n is the number of bits of the

message.

2.3.2. Data exhaustive analysis

Data exhaustive analysis, also called dictionary attack, is a known-plaintext

attack. The adversary builds up a table with enough pair (pi , ci) to reuse

them later to decrypt similar encrypted messages. Longer the ciphertext are

harder to acquire all the needed pairs will be.

28

2.3.3. Cryptanalysis

Besides force brute attacks we have also cryptanalysis algorithms, which can

be divided in:

• Linear Cryptanalysis (LC): used for block and stream ciphers.

• Differential Cryptanalysis (DC): used for block and stream ciphers and

hash functions.

2.4. Computational security

The encryption algorithm is said to be computationally secure if the best

attack is too complex for the adversary.

The attack complexity can be divided in:

• Data Complexity

• Storage Complexity

• Processing Complexity

A security schema is computationally secure to the previous described force

brute attacks if:

• The key k is big enough (>64 bit), to avoid exhaustive key search.

• The messages’ length is big enough (>64 bit), to avoid data exhaustive

analysis.

2.5. Attacks in automotive systems

To prevent cyber attacks on vehicles, security solutions must be designed for

automotive systems. There exist, however, a number of fundamental

29

limitations when designing such solutions. First, the ECUs inside the vehicles

have limitations in computational power, memory, bandwidth, and power

consumption. Second, the ECUs operate in a real-time environment where

queuing of messages and delays are not tolerated. The data received from

sensors on a vehicle must be processed in real-time, and decisions to affect

the correct actuators must be made with no imposed delay. The design of

security solutions must take the real-time constraint into consideration. Third,

the traffic patterns for vehicular communication differ from traffic patterns in

traditional IP networks. For example, data on the CAN bus in the in-vehicle

network is broadcast. Vehicular ad hoc networks could be formed

spontaneously in vehicle-to-vehicle and vehicle-to-roadside communication.

In addition, automotive manufacturers could establish vehicle-to-infrastructure

environments for performing wireless diagnostics and firmware updates on

vehicles. The different traffic patterns and communication models require

different solutions. Thus, traditional solutions developed for IP networks

cannot be used.

The three most important research challenges for providing security solutions

for automotive systems are described as follows. The vehicle allows

interaction with the physical world, such as receiving warning signals from

other vehicles or intersections and crossings. As a consequence, cyber

attacks that simulate the physical world will most likely occur. Thus, a

challenge is to verify the authenticity of incoming data to a vehicle. For

example, a vehicle must assure that the received warning is correct and fresh

(no replay) and that it was sent from the correct physical entity (e.g., vehicle

or intersection).

While authenticating that incoming data is correct is one challenge, protecting

the listening interface from intrusions is another. Since the wireless interface

is a listening service it could possibly be subverted and allow an attacker

access to the in-vehicle network. Thus, providing proper mechanisms for

30

preventing intrusions is an important challenge. Firewalls to prevent

unauthorized accesses are necessary, and logging and detection

mechanisms are needed to detect and trace attackers. However, designing

these security solutions to meet the real-time requirements and the limitations

in the ECUs is a challenge.

A third research challenge is to protect the security solutions in the in-vehicle

network. This project defines security in this scenario. Assume various

cryptographic keys are used to secure the wireless communication and

access control lists are used to allow only authorized connections such that

the wireless gateway is protected against intrusions. An attacker could

potentially access the in-vehicle network via the OBD (on-board diagnostics)

port by physically connecting a device to the vehicle. If the security solutions

protect against attacks only via the wireless gateway, an attacker could

choose to attack the in-vehicle network via the OBD instead. For example,

the attacker could easily extract the needed cryptographic keys and update

the access control lists such that he can execute future attacks via the

wireless gateway. Thus, it is a challenge to protect the in-vehicle network and

the security credentials against physical attacks via the OBD.

Figure 20 - An example of car attack

31

The usual motivation within the criminal world will be financial gain; therefore

a cyber attack against automotive systems could potentially provide criminals

with a repeatable, remotely exploitable mechanism for breaking into vehicles

for theft of vehicle contents and/or the vehicle itself. On a more sinister level,

should criminals be keen on impacting the safety of a victim’s vehicle in some

way then this might be achievable through cyber attack. Other criminal

activity might just relate to hackers, where no financial gain is sought but

merely the ability to demonstrate technical prowess through remotely

attacking and controlling automotive systems.

32

3. AES cipher

AES will be the main encryption algorithm on which the following discussed

protocols will rely on. It belongs to the symmetric-key algorithm family.

The Advanced Encryption Standard (AES), also referenced as Rijndael (its

original name), is a specification for the encryption of electronic data

established by the U.S. National Institute of Standards and Technology

(NIST) in 2001.

AES has been adopted by the U.S. government and is now used worldwide.

It supersedes the Data Encryption Standard (DES), which was published in

1977 [iv].

AES is based on a design principle known as a substitution-permutation

network, combination of both substitution and permutation, and is fast in both

software and hardware.

AES is a variant of Rijndael, which has a fixed block size of 128 bits, and a

key size of 128, 192, or 256 bits. By contrast, the Rijndael could work with

block and key sizes that may be any multiple of 32 bits, both with a minimum

of 128 and a maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, called the state,

although some versions of Rijndael have a larger block size and have

additional columns in the state. Most AES calculations are done in a special

finite field.

The key size used for an AES cipher specifies the number of repetitions of

transformation rounds that convert the input, called the plaintext, into the final

output, called the ciphertext. The number of cycles of repetition is as follows:

33

• 10 cycles of repetition for 128-bit keys.

• 12 cycles of repetition for 192-bit keys.

• 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing four similar

but different stages, including one that depends on the encryption key itself. A

set of reverse rounds is applied to transform ciphertext back into the original

plaintext using the same encryption key.

Figure 21 - AES scheme

34

3.1. AES encryption algorithm

At the start of the Cipher, the input is copied to the State array as described

in Figure 23 [v].

Figure 22 - State array input and output

After an initial Round Key addition, the State array is transformed by

implementing a round function 10, 12, or 14 times (depending on the key

length), with the final round differing slightly from the first Nr -1 rounds. The

final State is then copied to the output as described in Figure 22.

The round function is parameterized using a key schedule that consists of a

one-dimensional array of four-byte words derived using the Key Expansion

routine described in Sec. 3.2.

The Cipher is described in the pseudo code in Fig. 23.

35

Figure 23 - AES cipher suite

The individual transformations - SubBytes(), ShiftRows(), MixColumns(), and

AddRoundKey() – process the State and are described in the following

subsections. In Figure 23, the array w[] contains the key schedule, which is

described in Sec. 3.2.

As shown in Figure 21, all Nr rounds are identical with the exception of the

final round, which does not include the MixColumns() transformation.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin

 byte state[4,Nb]

 state = in

 AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr-1

���SubBytes(state)���

ShiftRows(state)���

MixColumns(state)���

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)���

ShiftRows(state)���

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

 out = state

end

36

3.1.1. SubBytes() Transformation

The SubBytes() transformation is a non-linear byte substitution that operates

independently on each byte of the State using a substitution table (S-box).

This S-box (Figure 25), which is invertible, is constructed by composing two

transformations:

1. Take the multiplicative inverse in the finite field GF(28); the element {00} is

mapped to itself.

2. Apply the following affine transformation (over GF(2)):

bi' = bi ⨁ b(i +4)mod8 ⨁ b(i +5)mod8 ⨁ b(i +6)mod8 ⨁ b(i +7)mod8 ⨁ ci

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit of

a byte c with the value {63} or {01100011}. Here and elsewhere, a

prime on a variable (e.g. b’) indicates that the variable is to be

updated with the value on the right.

In matrix form, the affine transformation element of the S-box can be

expressed as:

Figure 24 illustrates the effect of the SubBytes() on the State.

37

Figure 24 - SubBytes() applies the S-box to each byte of the State

The S-box used in the SubBytes() transformation is presented in hexadecimal

form in Figure 25.

Figure 25 - S-box: substitution values for the byte xy (Hex format)

38

3.1.2. ShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State

are cyclically shifted over different numbers of bytes (offsets). The first row,

r=0, is not shifted. Specifically, the ShiftRows() transformation proceeds as

follows:

s 'r,c = sr,(c+shift (r,Nb))modNb

Where the shift value shift(r,Nb) depends on the row number, r, as follows

(recall that Nb = 4):

shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3

This has the effect of moving bytes to “lower” positions in the row (i.e., lower

values of c in a given row), while the “lowest” bytes wrap around into the “top”

of the row (i.e., higher values of c in a given row). Figure 26 illustrates the

ShiftRows() transformation.

For 0 < r < 4 and 0 ≤ c < Nb,

39

Figure 26 - ShiftRows() cyclically shifts the last three rows in the State

3.1.3. MixClolumns() Transformation

The MixColumns() transformation operates on the State column-by-column,

treating each column as a four-term polynomial. The columns are considered

as polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed

polynomial a(x), given by

a(x) = {03}x3 + {01}x2 + {01}x + {02}

This can be written as a matrix multiplication. Let

 s '(x) = a(x)⊗ s(x)

40

As a result of this multiplication, the four bytes in a column are replaced by

the following:

Figure 27 illustrates the MixColumns() transformation.

Figure 27 - MixColumns() operates on the State column-by-column

41

3.1.4. AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State by

a simple bitwise XOR operation. Each Round Key consists of Nb words from

the key schedule (Sec. 3.2). Those Nb words are each added into the

columns of the State, such that

[s'0,c , s'1,c , s'2,c , s'3,c] = [s0,c , s1,c , s2,c , s3,c]⊕ [wround*Nb+c]

where [wi] are the key schedule words, and round is a value in the range

0≤round≤ Nr. In the Cipher, the initial Round Key addition occurs when

round=0, prior to the first application of the round function (see Figure 21).

The application of the AddRoundKey() transformation to the Nr rounds of the

Cipher occurs when 1 ≤ round ≤ Nr.

The action of this transformation is illustrated in Figure 28, where l =

round*Nb.

Figure 28 - AddRoundKey() XORs each column of the State with a word from the key schedule

42

3.2. Key Expansion algorithm

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion

routine to generate a key schedule. The Key Expansion generates a total of

Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words, and each

of the Nr rounds requires Nb words of key data. The resulting key schedule

consists of a linear array of 4-byte words, denoted [wi], with i in the range

0≤i<Nb(Nr + 1).

The expansion of the input key into the key schedule proceeds according to

the pseudo code in Figure 29.

SubWord() is a function that takes a four-byte input word and applies the S-

box (Figure 22) to each of the four bytes to produce an output word.

43

The function RotWord() takes a word [a0,a1,a2,a3] as input, performs a cyclic

permutation, and returns the word [a1,a2,a3,a0]. The round constant word

array, Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with xi-1 being

powers of x (x is denoted as {02}) in the field GF(28) (note that i starts at 1,

not 0).

Figure 29 - Key Expansion pseudo code

From Figure 29, it can be seen that the first Nk words of the expanded key

are filled with the Cipher Key. Every following word, w[i], is equal to the XOR

of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For

words in positions that are a multiple of Nk, a transformation is applied to w[i-

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

word temp

i = 0

while (i < Nk)

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]

temp = w[i-1]

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else

if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)

end if

w[i] = w[i-Nk] xor temp

i = i + 1

end while

end

44

1] prior to the XOR, followed by an XOR with a round constant, Rcon[i]. This

transformation consists of a cyclic shift of the bytes in a word (RotWord()),

followed by the application of a table lookup to all four bytes of the word

(SubWord()).

It is important to note that the Key Expansion routine for 256-bit Cipher Keys

(Nk=8) is slightly different than for 128 and 192-bit Cipher Keys. If Nk = 8 and

i-4 is a multiple of Nk, then SubWord() is applied to w[i-1] prior to the XOR.

3.3. AES Inverse cipher

The Cipher transformations in Sec. 3.1 can be inverted and then

implemented in reverse order to produce a straightforward Inverse Cipher for

the AES algorithm. The individual transformations used in the Inverse Cipher

-InvShiftRows(), InvSubBytes(),InvMixColumns(), and AddRoundKey() -

process the State; they are not described in the following sections as they

haven’t been implemented.

3.4. AES operation modes

Every symmetric key block cipher algorithm can work in different modes of

operation, as described in Sec. 2.2.2.

AES, being a symmetric block cipher, can operate in one of those modes.

The block cipher modes ECB, CBC, OFB, CFB, CTR provide confidentiality,

but they do not protect against accidental modification or malicious

tampering. Modification or tampering can be detected with a separate

message authentication code such as CBC-MAC, or a digital signature. The

cryptographic community recognized the need for dedicated integrity

45

assurances and NIST responded with AES-CMAC, in a way another AES

mode of operation [vi].

3.5. AES – CMAC

AES-CMAC provides stronger assurance of data integrity than a checksum or

an error-detecting code. The verification of a checksum or an error-detecting

code detects only accidental modifications of the data, while CMAC is

designed to detect intentional, unauthorized modifications of the data, as well

as accidental modifications.

AES-CMAC achieves a security goal similar to that of HMAC.

Since AES-CMAC is based on a symmetric key block cipher, AES, and

HMAC is based on a hash function, such as SHA-1, AES-CMAC is

appropriate for information systems in which AES is more readily available

than a hash function.

AES-CMAC uses the Advanced Encryption Standard (AES) as a building

block. To generate a MAC, AES-CMAC takes a secret key, a message of

variable length, and the length of the message in octets as inputs and returns

a fixed-bit string called a MAC.

The core of AES-CMAC is the basic CBC-MAC. For a message, M, to be

authenticated, the CBC-MAC is applied to M. There are two cases of

operation in CMAC. Figure 31 illustrates the operation of CBC-MAC in both

cases. If the size of the input message block is equal to a positive multiple of

the block size (namely, 128 bits), the last block shall be exclusive-OR'ed with

K1 before processing. Otherwise, the last block shall be padded with 10^i

and exclusive-OR'ed with K2.

The result of the previous process will be the input of the last encryption. The

output of AES-CMAC provides data integrity of the whole input message.

46

Figure 30 - Two cases of AES-CMAC

- CIPHK is AES-128 with key K.

- The message M is divided into blocks M1,…Mn , where Mi is the i-th

message block.

- The length of Mi is 128 bits for i = 1,...,n-1, and the length of the last

block, Mn, is less than or equal to 128 bits.

- K1 is the subkey for the case (a), and K2 is the subkey for the case (b).

- K1 and K2 are generated by the subkey generation algorithm described

in section 3.4.1.1.

(a) positive multiple block length (b) otherwise

47

3.5.1.1. Subkey generation algorithm

The subkey generation algorithm, Generate_Subkey(), takes a secret key, K,

which is just the key for AES-128. The outputs of the subkey generation

algorithm are two subkeys, K1 and K2.

(K1,K2) := Generate_Subkey(K).

Subkeys K1 and K2 are used in both MAC generation and MAC verification

algorithms. K1 is used for the case where the length of the last block is equal

to the block length. K2 is used for the case where the length of the last block

is less than the block length.

Figure 31 - CMAC generate_subkey() pseudo code

 Input : K (128-bit key)

 Output : K1 (128-bit first subkey)

 K2 (128-bit second subkey)

 Constants: const_Zero is 0x00000000000000000000000000000000

 const_Rb is 0x00000000000000000000000000000087

 Variables: L for output of AES-128 applied to 0^128

 Step 1. L := AES-128(K, const_Zero);

 Step 2. if MSB(L) is equal to 0

 then K1 := L << 1;

 else K1 := (L << 1) XOR const_Rb;

 Step 3. if MSB(K1) is equal to 0

 then K2 := K1 << 1;

 else K2 := (K1 << 1) XOR const_Rb;

 Step 4. return K1, K2;

48

- In step 1, AES-128 with key K is applied to an all-zero input block.

- In step 2, K1 is derived through the following operation:

If the most significant bit of L is equal to 0, K1 is the left-shift of L

by 1 bit.

Otherwise, K1 is the exclusive-OR of const_Rb and the left-shift of

L by 1 bit.

- In step 3, K2 is derived through the following operation:

If the most significant bit of K1 is equal to 0, K2 is the left-shift of

K1 by 1 bit.

Otherwise, K2 is the exclusive-OR of const_Rb and the left-shift of

K1 by 1 bit.

- In step 4, (K1,K2) := Generate_Subkey(K) is returned.

3.5.1.2. MAC generation algorithm

The MAC generation algorithm, AES-CMAC(), takes three inputs, a secret

key, a message, and the length of the message in octets. The secret key,

denoted by K, is just the key for AES-128. The message and its length in

octets are denoted by M and len, respectively. The message M is denoted by

the sequence of M_i, where M_i is the i-th message block. That is, if M

consists of n blocks, then M is written as:

- M = M1 || M2 || ... || Mn-1 || Mn

The length of Mi is 128 bits for i = 1,...,n-1, and the length of the last block Mn

is less than or equal to 128 bits.

49

The output of the MAC generation algorithm is a 128-bit string called a MAC,

which is used to validate the input message. The MAC is denoted by:

T := AES-CMAC(K,M,len)

Validating the MAC provides assurance of the integrity and authenticity of the

message from the source.

It is possible to truncate the MAC. According to CMAC, at least a 64-bit MAC

should be used as protection against guessing attacks. The result of

truncation should be taken in most significant bits first order.

The block length of AES-128 is 128 bits (16 octets). There is a special

treatment if the length of the message is not a positive multiple of the block

length. The special treatment is to pad M with the bit-string 10^i to adjust the

length of the last block up to the block length.

For an input string x of r-octets, where 0 <= r < 16, the padding function,

padding(x), is defined as follows:

padding(x) = x || 10^i where i is 128-8*r-1

That is, padding(x) is the concatenation of x and a single '1', followed by the

minimum number of '0's, so that the total length is equal to 128 bits.

50

Figure 32 describes the MAC generation algorithm.

Figure 32 - AES-CMAC pseudo code

Input : K (128-bit key)
 : M (message to be authenticated)
 : len (length of the message in octets)
 Output : T (message authentication code)
 Constants: const_Zero is 0x00000000000000000000000000000000
 const_Bsize is 16
 Variables: K1, K2 for 128-bit subkeys
 M_i is the i-th block (i=1..ceil(len/const_Bsize))
 M_last is the last block xor-ed with K1 or K2
 n for number of blocks to be processed
 r for number of octets of last block
 flag for denoting if last block is complete or not

 Step 1. (K1,K2) := Generate_Subkey(K);
 Step 2. n := ceil(len/const_Bsize);
 Step 3. if n = 0
 then
 n := 1;
 flag := false;
 else
 if len mod const_Bsize is 0
 then flag := true;
 else flag := false;
 Step 4. if flag is true
 then M_last := M_n XOR K1;
 else M_last := padding(M_n) XOR K2;
 Step 5. X := const_Zero;
 Step 6. for i := 1 to n-1 do
 begin
 Y := X XOR M_i;
 X := AES-128(K,Y);
 end
 Y := M_last XOR X;
 T := AES-128(K,Y);
 Step 7. return T;

51

- In step 1, subkeys K1 and K2 are derived from K through the subkey

generation algorithm.

- In step 2, the number of blocks, n, is calculated. The number of blocks

is the smallest integer value greater than or equal to the quotient

determined by dividing the length parameter by the block length, 16

octets.

- In step 3, the length of the input message is checked. If the input

length is 0 (null), the number of blocks to be processed shall be 1, and

the flag shall be marked as not-complete-block (false).

Otherwise, if the last block length is 128 bits, the flag is marked as

complete-block (true); else mark the flag as not-complete-block (false).

- In step 4, M_last is calculated by exclusive-OR'ing M_n and one of the

previously calculated subkeys. If the last block is a complete block

(true), then M_last is the exclusive-OR of M_n and K1.

Otherwise, M_last is the exclusive-OR of padding(M_n) and K2.

- In step 5, the variable X is initialized.

- In step 6, the basic CBC-MAC is applied to M_1,...,M_{n-1},M_last.

- In step 7, the 128-bit MAC, T := AES-CMAC(K,M,len), is returned.

- If necessary, the MAC is truncated before it is returned.

52

3.5.1.3. Security considerations

The security provided by AES-CMAC is built on the strong cryptographic

algorithm AES. However, as is true with any cryptographic algorithm, part of

its strength lies in the secret key, K, and the correctness of the

implementation in all of the participating systems. If the secret key is

compromised or inappropriately shared, it guarantees neither authentication

nor integrity of message at all.

If and only if AES-CMAC is used properly it provides the authentication and

integrity that meet the best current practice of message authentication.

3.6. AES Key Wrap algorithm

United States of America has chosen AES Key Wrap algorithm for AES keys

encryption. This algorithm is described in this section because it will be

useful, together with AES-CMAC, during the developing of MACsec Key

Agreement protocol in Sec. 4.5.2.

The AES key wrap algorithm is designed to wrap or encrypt key data [vii].

The key wrap operates on blocks of 64 bits. Before being wrapped, the key

data is parsed into n blocks of 64 bits.

The only restriction the key wrap algorithm places on n is that n be at least

two.

The inputs to the key wrapping process are the KEK and the plaintext to be

wrapped. The plaintext consists of n 64-bit blocks, containing the key data

being wrapped. The key wrapping process is described below (Figure 33).

53

Figure 33 - AES Key Wrap pseudo code

The initial value (IV) refers to the value assigned to A[0] in the first step of the

wrapping process. This value is used to obtain an integrity check on the key

data. In the final step of the unwrapping process, the recovered value of A[0]

is compared to the expected value of A[0]. If there is a match, the key is

accepted as valid, and the unwrapping algorithm returns it. If there is not a

match, then the key is rejected, and the unwrapping algorithm returns an

error.

The default initial value (IV) is defined to be the hexadecimal constant:

 A[0] = IV = A6A6A6A6A6A6A6A6

1) Initialize variables.

 Set A0 to an initial value (see 2.2.3)

 For i = 1 to n

 R[0][i] = P[i]

 2) Calculate intermediate values.

 For t = 1 to s, where s = 6n

 A[t] = MSB(64, AES(K, A[t-1] | R[t-1][1])) ^ t

 For i = 1 to n-1

 R[t][i] = R[t-1][i+1]

 R[t][n] = LSB(64, AES(K, A[t-1] | R[t-1][1]))

 3) Output the results.

Set C[0] = A[t]

 For i = 1 to n

 C[i] = R[t][i]

54

The use of a constant as the IV supports a strong integrity check on the key

data during the period that it is wrapped. If unwrapping produces A[0] =

A6A6A6A6A6A6A6A6, then the chance that the key data is corrupt is 2-64. If

unwrapping produces A[0] any other value, then the unwrap must return an

error and not return any key data.

55

4. MAC Security (MACsec)

4.1. Introduction

After the discussion of symmetric cryptographic algorithms (Sec. 3), with

special emphasis on AES and its modes of operations AES-CMAC and AES

Key Wrap, in this section a new protocol is introduced, MACsec, which takes

advantage of the previously treated algorithms.

MACsec (Media Access Control security) [viii] has been chosen as security

standard by Renesas, in the developing of a project whose aim is to establish

secure communications between devices inside automotive environment on

Ethernet links.

The main problem to deal with is the access by unauthorized people or

devices to controlled or confidential information.

The best and most secure solution to vulnerability at the access edge is to

use the intelligence of the network. The standard IEEE 802.1X provides port-

based access control using authentication, but authentication alone does not

guarantee the confidentiality and integrity of data on the LAN. While physical

security and end-user awareness can mitigate threats to data on an IEEE

802.1X–authenticated LAN, in the case of automotive field there may be

situations in which the LAN needs additional protection. When additional

protection is needed we can enable data confidentiality and integrity on the

LAN by using MAC Security (MACsec). Defined by the IEEE 802.1AE

standard, MACsec secures communication for authorized endpoints on

Ethernet links.

56

Figure 34 - 802.1X and MACsec

4.2. About MACsec

4.2.1. MACsec Benefits

The reasons why Renesas, and maybe other companies, are going in the

direction of MACsec implementations are to be found in the following benefits

of the protocol on wired networks:

• Confidentiality: MACsec helps ensure data confidentiality by providing

strong encryption at Layer 2.

• Integrity: MACsec provides integrity checking to help ensure that data

cannot be modified in transit.

• Flexibility: You can selectively enable MACsec using a centralized

policy, thereby helping ensure that MACsec is enforced where required

57

while allowing non-MACsec-capable components to access the

network.

• Network intelligence: Unlike end-to-end, Layer 3 encryption techniques

that hide the contents of packets from the network devices they cross,

MACsec encrypts packets on a hop-by-hop basis at Layer 2, allowing

the network to inspect, monitor, mark, and forward traffic according to

your existing policies.

Figure 35 - MACsec hop-by-hop basis

4.2.2. MACsec limitations

Although MACsec offers outstanding data security, it has some limitations:

• Endpoint support: Not all endpoints support MACsec.

• Hardware support: Line-rate encryption typically requires updated

hardware on the access switch.

• Technology integration: Enabling MACsec may affect the functions of

other technologies that also connect at the access edge, such as IP

telephony. Understanding and accommodating these technologies is

essential to a successful deployment.

58

4.3. 802.1X without MACsec

MACsec was primarily designed to be used in conjunction with IEEE 802.1X-

2010. IEEE 802.1X provides port-based access control using authentication.

An IEEE 802.1X–enabled port can be dynamically enabled or disabled based

on the identity of the user or device that connects to it. Figure 36 illustrates

the default behavior of an IEEE 802.1X–enabled port prior to authentication:

we can see that if the endpoint’s identity is unknown all traffic is blocked.

Figure 36 - 802.1X behavior prior to authentication without MACsec

After authentication instead (Figure 37), the endpoint’s identity is known and

all traffic from that endpoint is allowed. The switch performs source MAC

address filtering and port state monitoring to help ensure that only the

authenticated endpoint is allowed to send traffic.

59

Figure 37 - 802.1X behavior after authentication without MACsec

Before the 2010 revision of IEEE 802.1X, there was no mechanism to help

ensure the confidentiality or integrity of the traffic sent after authentication.

Because traffic was sent in the clear with no integrity checks, rogue users

with physical access to the authenticated port could monitor, modify, and

send traffic.

4.4. 802.1X-2010

IEEE 802.1X-2010 defines the way that MACsec can be used in conjunction

with authentication to provide secure port-based access control [ix] [x].

IEEE 802.1X authenticates the endpoint and transmits the necessary

cryptographic keying material to both sides.

Using the master keys derived from the IEEE 802.1X authentication, MACsec

can establish an encrypted link on the LAN, thereby helping ensure the

security of the authenticated session.

60

Figure 38 - MACsec enabled port

As we can see from Figure 38, rouge users, even with physical access, can’t

monitor or spoof encrypted traffic on the wire.

When MACsec is applied on both the uplink and the downlink, the MACsec

sessions are completely independent. Moreover, while all traffic is encrypted

on the wire, the traffic is in the clear inside each switch. This feature allows

the switch to apply all the network policies (quality of service [QoS], deep

packet inspection, NetFlow, etc.) to each packet without compromising the

security of the packet on the wire. With hop-by-hop encryption, MACsec

secures communication while maintaining network intelligence.

61

4.4.1. Secure communication

Each port that is capable of participating in an instance of the secure MAC

Service comprises:

• MAC Security Key Agreement (MKA) Entity (KaY)

• MAC Security Entity (SecY)

A secure Connectivity Association (CA) is created to meet the requirements

of the MAC Service and MACsec for connectivity between the stations

attached to an individual LAN.

Each CA is supported by unidirectional Secure Channels (SCs), each SC

supporting secure transmission of frames through the use of symmetric key

cryptography, from one of the systems to all the others in the CA.

Each SC is supported by an overlapped sequence of Security Associations

(SAs).

Each SA uses a fresh Secure Association Key (SAK) derived by the MKA to

provide the MACsec service guarantees and security services for a sequence

of transmitted frames.

In the following Figure we can see a typical scenario where the CA is created

by the MACsec Key Agreement following mutual authentication and

authorization of A, B and C, and the two SCs that support the CA.

62

Figure 39 - Secure communication scenario

4.4.2. Components and Protocols

MACsec uses three components (as shown in Figure 40):

1. Supplicant: The supplicant is a client that runs on the endpoint and

submits credentials for authentication. To support MACsec, the supplicant

must also be able to manage MACsec key negotiation and encrypt

packets.

2. Authenticator: The authenticator (switch) is the network access device that

facilitates the authentication process by relaying the supplicant’s

credentials to the authentication server. The authenticator enforces the

network access policy, including MACsec. Like the supplicant, the

authenticator must be capable of MACsec key negotiation and packet

encryption. The authenticator typically needs special hardware to support

MACsec at line rate.

CAA

BC

63

3. Authentication server: The authentication server validates the supplicant’s

credentials and determines what network access the supplicant should

receive. In MACsec, the authentication server plays an important role in

the distribution of master keying material to the supplicant and

authenticator. In addition, the authentication server can define the MACsec

policy to be applied to a particular endpoint.

Figure 40 - MACsec components and protocols

MACsec uses several protocols:

• Extensible Authentication Protocol (EAP): The message format and

framework defined by RFC 4187 that provides a way for the supplicant

and the authenticator to negotiate the EAP authentication method and

MACsec association.

64

• EAP method: Protocol that defines the authentication method—that is,

the credential type and how it will be submitted from the supplicant to

the authentication server using the EAP framework; for MACsec, the

EAP

method must be capable of generating keying material to export a

master session key (MSK) to the supplicant and authentication server.

• MACsec Key Agreement (MKA): Protocol that discovers MACsec peers

and negotiates the keys used by MACsec; MKA is defined in IEEE

802.1X-2010.

• Security Association Protocol (SAP): A pre-standard key agreement

protocol similar to MKA.

• EAP over LAN (EAPoL): An encapsulation defined by IEEE 802.1X for

the transport of EAP from the supplicant to the switch over IEEE 802

wired networks; EAPoL is a Layer 2 protocol (Sec. 4.5.2.2).

• RADIUS: Essentially the standard for communication between the

switch and the authentication server - the switch extracts the EAP

payload from the Layer 2 EAPoL frame and encapsulates the payload

inside a Layer 4 RADIUS packet; RADIUS is also used to deliver keying

material to the authenticator.

4.5. MACsec Sequence

With the following schema (Figure 41) we can see how the components and

protocols of MACsec work together. Messages exchange is divided into three

stages: master key distribution, session key agreement, and session secure.

65

A fourth stage, session termination, is not shown. Each stage is described in

the sections that follow.

Figure 41 - High Level 802.1X and MACsec sequence

4.5.1. Authentication and Master Key distribution

Through these messages (IEEE 802.1X) master key material will be provided

to the supplicant and switch that will subsequently be used by MACsec.

By using an EAP method that supports the generation of encryption keys, the

supplicant and the authentication server independently derive the same MSK

(Master Session Key). The MSK passes through a key derivation function to

66

generate a Connectivity Association Key (CAK) on the supplicant and the

authentication server. The CAK is a long-lived master key that is used to

generate all other keys needed for MACsec in the MKA.

The switch has no visibility into the details of the EAP session between the

supplicant and the authentication server, so it cannot derive the MSK or the

CAK directly. Instead, the switch receives the CAK from the authentication

server in the Access-Accept message at the end of the IEEE 802.1X

authentication. The CAK is delivered in the RADIUS vendor-specific attributes

(VSAs) MS-MPPE-Send-Key and MS-MPPE-Recv-Key. Along with the CAK,

the authentication server sends an EAP key identifier that is derived from the

EAP exchange and is delivered to the authenticator in the EAP Key-Name

attribute of the Access-Accept message.

4.5.2. Session key agreement (MKA)

In this stage of the protocol both the Supplicant and the Authenticator have

the same CAK key: the Supplicant derived it from the MSK using a Key

Derivation Function (Sec. 4.5.2.1), while the Authenticator received it from the

Authentication Server in the first stage.

This stage takes the name of MACsec Key Agreement (MKA) protocol. The

Authenticator’s goal is to deliver the SAK (Secure Association Key) to the

Supplicant as an encryption key for the future MACsec messages. To do this,

the Authenticator derives other two keys (ICK and KEK) starting from the

CAK, which is not used directly. ICK (ICV Key) is used for integrity of the

SAK, while the KEK (Key Encryption Key) is used in the AES Key Wrap

algorithm to wrap the SAK to be distributed.

67

Figure 42 - MKA key hierarchy

In the above Figure the MKA key hierarchy is shown.

The root of key hierarchy for any given instance of MKA is the secure

Connectivity Association Key (CAK), a secret key. Possession of a CAK for

the CA is a prerequisite for membership in each CA supported by MACsec,

and all potential members possess the same CAK and are attached to the

same LAN.

The main function, which is used in the creation of the two keys ICK and

KEK, is the KDF (Key Derivation Function), defined in the standard (Sec.

4.5.2.1). KDF uses a PRF (Pseudo Random Function), which in this case is

AES-CMAC.

4.5.2.1. KDF (Key Derivation Function)

68

The key derivation function (KDF) defined in the 802.1X-2010 standard is the

main function used to derive the keys in the MKA key hierarchy (see Figure

42).

The KDF uses a pseudorandom function (PRF), which shall be AES-CMAC-

128 when the derivation key is 128 bits.

The KDF is described as follows:

Figure 43 - KDF pseudo code

Output← KDF (Key, Label, Context, Length)

where

Input:

Key, a key derivation key of 128 or 256 bits

Label, a string identifying the purpose of the keys derived using this KDF Context, a bit

string that provides context to identify the derived key

Length, the length of the output in bits encoded in two octets with the most significant octet

first

Output: a Length-bit derived value

Fixed values:

���h, the length of the output of the PRF in bits

���r, denoting the length of the binary representation of the counter i

iterations ← (Length + (h-1))/h���

if iterations > 2r-1, then indicate an error and stop.

result ← ""���

do i = 1 to iterations

result ← result | PRF(Key, i | Label | 0x00 | Context | Length)

od

return first Length bits of result, and securely delete all unused bits

69

4.5.2.2. MKA transport

MKA provides a secure multipoint-to-multipoint transport between the

members of the same CA, suitable for conveying information that is constant,

or refreshed or acknowledged by the MKA applications that make use of that

transport. The CAK is used to authenticate each protocol data unit (MKPDU)

transmitted, providing proof of its transmission by a CA member, and each

station includes its own randomly chosen identifier and a message number in

the MKPDU. By transmitting MKPDUs that contain the identifiers and recent

message numbers of the other participants, each member proves that it is in

current possession of the CAK and is actively participating in the protocol,

thus demonstrating the ‘liveness’ of the MKPDU and distinguishing it from

MKPDUs that could have been captured by an attacker and played or

replayed later—with the aim of disrupting the protocol or of influencing its

outcome. MKPDUs are transmitted at regular intervals of MKA Hello Time or

MKA Bounded Hello Time.

The message numbers also serve to enforce in-order delivery, and each of

the MKA applications is designed so that the information conveyed in each

MKPDU is idempotent, i.e., can be repeated without further changing the

state of a recipient, and complete, i.e., fully expresses the desire of the

transmitter for state change at the recipient. This design philosophy simplifies

protocol analysis and allows a receiver to discard MKPDUs with prior

message numbers.

The MKA transport is fully distributed and, as a consequence, robust in the

face of the failure of any participant or of the LAN connectivity to that

participant.

70

4.5.2.3. EAPoL

MKA Protocol Data Units (MKPDUs) are transmitted as body of EAPoL MKA

messages.

EAP (Extensible Authentication Protocol) is an authentication framework

which supports multiple authentication methods.

The encapsulation of EAP over IEEE 802 is defined in IEEE 802.1X and

known as "EAP over LANs" or EAPOL.

The same three main components are defined in EAP and EAPoL to

accomplish the authentication conversation:

1. Supplicant (Port Authentication Entity (PAE) seeking access to network

resources)

2. Authenticator (PAE that controls network access)

3. Authentication Server (a RDIUS/AAA server)

The following figure shows how these LAN components are connected in a

wired environment (as discussed for MACsec in Sec. 4.5).

Figure 44 - EAPoL architecture

71

The EAPoL frame has the following format:

Figure 45 - EAPoL frame format

The fields in the frame are:

MAC Header
The first 6 bytes of the MAC header are the Destination Address and the last

6 bytes are the Source Address.

Ethernet Type
The Ethernet Type contains a 88-8e, this is the two byte type code assigned

to EAPoL.

Version
In 2004 Version 2 was standardized, nothing has been standardized since.

Packet Type
The Packet Type field is a byte long and represents the type of package the

frame is.

72

Packet Type Name Description

00000000 EAP-Packet Contains an encapsulated EAP frame (this

is what majority of EAPoL frames are)

00000001 EAPOL-Sart A supplicant can issue an EAPOL-Start

fram instead of waiting for a challenge

from the

authenticator

00000010 EAPOL-Logoff Used to return the state of the port to

unauthorized when the supplicant is

finished using the

network

00000011 EAPOL-Key Used to exchange Cryptographic Keying

information

00000100 EAPOL-

Encapsulated-

ASF-Alert

Provided as a method of allowing Alerting

Standards Forum (ASF) alerts (ex. specific

SNMP traps) to be forwarded through a

port that is in the Unauthorized state

00000101 EAPOL-MKA Used to exchange

During the MKA protocol the EAPoL method used is the EAPOL-MKA (type

5).

Packet Body Length
The Packet Body Length field is a 2 byte value representing packet body

length (It is set to 0 when there is no packet body)

73

Packet Body
The Length field is two bytes long and contains the number of bytes in the

entire packet. EAP assumes anything in excess of the Length is padding that

can be ignored.

Frame Check Sequence
The Frame Check Sequence (FCS) is checksum value added to the frame for

error detection and correction.

Each MKPDU (Figure 46) comprises a number of parameter sets. The first of

these, the Basic Parameter Set, is always present, and is followed by zero or

more further parameter sets, followed by the ICV. The ICV comprises the last

16 octets of the MKPDU, as indicated by the EAPOL Packet Body Length.

Figure 46 - EAPOL - MKA packet body with MKPDU format

4.5.2.4. SAK generation

74

The Key Server is responsible for generating and distributing MACsec SAKs,

using AES Key Wrap, to each of the other members of the CA, using the

MKA transport.

Each SAK is identified by a 128-bit Key Identifier (KI), comprising the Key

Server’s MI (providing the more significant bits) and a 32-bit Key Number

(KN) assigned by that Key Server (sequentially, beginning with 1). Each KI is

used to identify the corresponding SAK for the purposes of SA assignment,

and appears in the clear in MKPDUs, so network management equipment

and personnel can observe and diagnose MKA operation (if necessary)

without having access to any secret key.

Each SAK should be generated using the KDF specified in Sec. 4.5.2.1.

using the following transform:

SAK = KDF(Key, Label, KS-nonce | MI-value list | KN, SAKlength)

Where:

- Key = CAK Label = “IEEE8021 SAK”

- KS-nonce = a nonce of the same size as the required SAK, obtained

from an RNG each time an SAK is generated.

- MI-value list =a concatenation of MI values (Member Identifier,

randomly chosen by each participant at the beginning of the protocol)

from all live participants.

- KN = four octets, the Key Number assigned by the Key Server as part

of the KI

- SAKlength = two octets representing an integer value (128 for a 128 bit

SAK, 256 for a 256 bit SAK) with the most significant octet first.

75

4.5.2.5. CAK derivation

A pairwise CAK is derived directly from the EAP MSK using the following

transform:

CAK = KDF(Key, Label, mac1 | mac2, CAKlength)

Where:

- Key = MSK[0-15] for a 128 bit CAK, MSK[0-31] for a 256 bit CAK.

- Label = "IEEE8021 EAP CAK"

- mac1 = the lesser of the two source MAC addresses used in the

EAPOL-EAP exchange.

- mac2 = the greater of the two source MAC addresses used in the

EAPOL-EAP exchange.

- CAKlength = two octets representing an integer value (128 for a 128 bit

CAK, 256 for a 256 bit CAK) with the most significant octet first.

A 16 octet CKN is derived from the EAP session ID using the following

transform:

CKN = KDF(Key, Label, ID | mac1| mac2, CKNlength)

Where:

- Key = MSK[0-15] for a CKN naming a 128 bit CAK, MSK[0-31] for

naming a 256 bit CAK.

- ID = EAP-Session-ID Label = "IEEE8021 EAP CKN"

76

- mac1 = the lesser of the two source MAC addresses used in the

EAPOL-EAP exchange.

- mac2 = the greater of the two source MAC addresses used in the

EAPOL-EAP exchange.

- CKNlength = two octets representing an integer value (128) with the

most significant octet first.

4.5.2.6. ICK derivation

ICK (Integrity Check value Key) is a 128bit key derived using the KDF with

the following parameters:

- Key : CAK (16 octets)

- Label : “IEEE8021 ICK” (12 octets)

- Context: first 16 octets of the CKN for the CAK

- Length: ICK length (“0080”, 2 octets)

This is a test vector for the ICK derivation.

- Key : 135bd758 b0ee5c11 c55ff6ab 19fdb199

- Label : 49454545 38303231 2049434b

- Context: 96437a93 ccf10d9d fe347846 cce52c7d

- Length: 0080

- Output: 8f1c5cb1 c8ed2e5f 047906e0 473aad4d

The ICK key is used to produce an ICV for integrity protection as described in
Sec. 4.5.2.8.

77

4.5.2.7. KEK derivation

KEK (Key Encryption Key) is a 128bit key (Figure 42) that will be used as key

in the AES Key Wrap algorithm (Sec. 3.6) to protect the session key SAK for

MACsec communication.

The KEK is derived from the CAK using the following transform:

KEK = KDF(Key, Label, Keyid, KEKLength)

Where:

- Key = CAK Label = “IEEE8021 KEK”

- Keyid = the first 16 octets of the CKN, with null octets appended to pad

to 16 octets if necessary

- KEKLength = two octets representing an integer value (128 for a 128 bit

KEK, 256 for a 256 bit KEK) with the most significant octet first

4.5.2.8. Message authentication

Each protocol data unit (MKPDU) transmitted is integrity protected by an 128

bit ICV, generated by AES- CMAC using the ICK:

ICV = AES-CMAC (ICK, M, 128)

M = DA + SA + (MSDU – ICV)

In other words, M comprises the concatenation of the destination and source

MAC addresses, each represented by a sequence of 6 octets in canonical

format order, with the MSDU (MAC Service Data Unit) of the MKPDU

78

including the allocated Ethertype, and up to but not including, the generated

ICV.

79

5. MKA Key Hierarchy SW Implementation

After the conceptual and algorithmic description of AES and MACsec, with

particular attention to the MKA Key Hierarchy protocol, it’s possible, after the

commitment of Renesas, to show a software implementation of the key

hierarchy described in Sec. 4.5.2.

The implemented software will be used to test the hardware solution (Sec. 6),

to show its output correctness.

5.1. Java implementation

One of the main reasons Java has been chosen at first is its platform

independence, which means that Java programs can be run on many

different types of computers. A Java program runs on any computer with a

Java Runtime Environment, also known as a JRE, installed. A JRE is

available for almost every type of computer — PCs running Windows,

Macintosh computers, Unix or Linux computers, huge mainframe computers,

and even cell phones.

Regarding automotive environment Java is not the best solution, but as will

be shown later (Sec. 5.2) a C implementation will be preferred.

However Java software is very useful for future hardware results test and it’s

faster and easier to implement respect to C.

80

5.1.1. AES – CMAC

The AES-CMAC Java module has been developed to obtain a CMAC value

starting from an input message and key of variable length. The realization

followed the specifications of the [rfc4493] standard.

INPUTS:

- Message to be encrypted

- Key for encryption

OUTPUT:

- CMAC 128bit value

Figure 47 - CMAC Java sample output

5.1.1.1. Cipher.class

As described in Sec. 3.5 the AES-CMAC relies on AES encryption algorithm.

The final software takes advantage of the Java Cipher.class class: this class

provides the functionality of a cryptographic cipher for encryption and

decryption. It forms the core of the Java Cryptographic Extension (JCE)

framework [xi].

81

In order to create a Cipher object, the application calls the Cipher's

getInstance method, and passes the name of the requested transformation to

it. Optionally, the name of a provider may be specified.

A transformation is a string that describes the operation (or set of operations)

to be performed on the given input, to produce some output.

A transformation always includes the name of a cryptographic algorithm (e.g.,

AES), and may be followed by a feedback mode and padding scheme.

A transformation is of the form:

- "algorithm/mode/padding" or

- "algorithm"

(in the latter case, provider-specific default values for the mode and padding

scheme are used).

The transformation used in this case has been of the type:

Cipher aesCipher = Cipher.getInstance("AES/CBC/NOPADDING");

As we can see the algorithm is of course AES, while the mode is CBC with no

padding; there is no CMAC mode in the modes list of the transformations

which can be requested by the getInstance method.

After having the cipher instance, the init method is called to initialize the

cipher with a key and a set of algorithm parameters.

public final void init(int opmode, Key key, AlgorithmParameterSpec params)

 throws InvalidKeyException, InvalidAlgorithmParameterException

opmode - the operation mode of this cipher (this is one of the following:

ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE)

82

key - the encryption key

params - the algorithm parameters

The cipher is initialized for one of the following four operations: encryption,

decryption, key wrapping or key unwrapping, depending on the value of

opmode.

In the CMAC case, the init method is called as follows:

aesCipher.init(Cipher.ENCRYPT_MODE, key, ZERO_IV);

where:

- opmode is ENCRYPT_MODE since we have to encrypt the message

created with the CMAC algorithm

- key is a 128bit key

- ZERO_IV is a 128bit initialization vector (as requested in the CMAC

algorithm) of 16 octets equals to 0x00; it belongs to the

IvParameterSpec class which specifies an initialization vector (IV).

To start the encryption the method update has to be called:

public final int update(byte[] input, int inputOffset, int inputLen, byte[] output,

int outputOffset)

 throws ShortBufferException

The update method used in the case of CMAC continues a multiple-part

encryption processing another data part.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive,

are processed, and the result is stored in the output buffer, starting at

outputOffset inclusive.

83

Parameters:

- input - the input buffer

- inputOffset - the offset in input where the input starts

- inputLen - the input length

- output - the buffer for the result

- outputOffset - the offset in output where the result is stored

At the end of a multi-part encryption done with update method, the doFinal

method has to be called:

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output,

 int outputOffset)

 throws ShortBufferException, IllegalBlockSizeException,

BadPaddingException

The method encrypts data in a single-part operation, or, in this case, finishes

a multiple-part operation.

The first inputLen bytes in the input buffer, starting at inputOffset inclusive,

and any input bytes that have been buffered during a previous update

operation, are processed, with padding (if requested) being applied.

Parameters:

- input - the input buffer

- inputOffset - the offset in input where the input starts

- inputLen - the input length

- output - the buffer for the result

- outputOffset - the offset in output where the result is stored

84

5.1.1.2. Results

In order to test the software solution of the AES-CMAC the results are being

compared to the test vectors of AES-CMAC 128 given by NIST [xii].

5.1.1.3. Applet Java and Web Server

After the AES_CMAC Java implementation, a Web Applet has been created

to give the possibility to use the CMAC calculator on a webpage available on

the net.

The homepage of the so called CMACalculator (Figure 48) consists in two

simple fields asking for the key and the message for the encryption algorithm.

Figure 48 - CMACalculator homepage

85

To make our Java aesCmac class run by a web browser, a Java applet has

to be realized.

A Java applet is a small application which is written in Java and delivered to

users in the form of bytecode. The user launches the Java applet from a web

page, and the applet is then executed within a Java Virtual Machine (JVM) in

a process separate from the web browser itself.

A Java applet extends the class java.applet.Applet. The class which must

override methods from the applet class to set up a user interface inside itself

(Applet) is a descendant of Panel which is a descendant of Container. As

applet inherits from container, it has largely the same user interface

possibilities as an ordinary Java application, including regions with user

specific visualization.

So to turn the aesCmac class in a Java applet it must extend Applet:

public class AesCmac extends Applet { … }

Now the html page has to include the <applet> tag in the <head> of the page:

<APPLET id="cmac" CODE="AesCmac.class">

Of course to make the applet run in the web browser, Java must be activated.

86

5.1.2. Results and performance

The main module in the MKA Key Hierarchy protocol from a software point of

view is the AES-CMAC described in Sec. 5.1.1.

Another implemented module is AES Key Wrap algorithm, which is compliant

with the rfc3394.

The whole MKA Key Hierarchy Java implementation flow is shown below:

Figure 49 - Java SW flow

GETS

INPUTS

 CMAC

KEK

CMAC

ICK

AES KEY

WRAP (SAK)

ICV (ICK)

 RESULTS

87

To test the performance of the Java implementation we have to face the time

precision issues related to:

- Clock resolution (less accuracy)

- Java Virtual Machine (JVM) implementation in each operating system

- Computer architecture

Java.lang.System.currentTimeMillis() is used to get timing information; it runs

faster then others (5/6 CPU clocks).

Protocol Speed in ms

AES-CMAC 727

AES KEY WRAP 534

ICV 230

TOTAL 1491

Figure 50 - MKA Key hierarchy Java performance

These results are obtained with the following computer architecture:

- CPU: Intel i7 2,3GHz

- RAM: 8GB DDR3

- OS: Win 7 64bit

- JVM version 8, build 1.8.0_45-b14

As visible from the above table, the most time expensive software module is

the AES-CMAC, since it has to encrypt multiple times using the AES cipher.

88

5.2. C implementation

The C implementation of the AES-CMAC algorithm came straightforward

after the need to authenticate the devices to the main board, which are not

MACsec already capable. The other modules of MKA Key Hierarchy are not

implemented yet.

To deal with AES encoding in C there is the need of the OpenSSL libray,

which has to be included in the way:

#include <openssl/aes.h>

The version of OpenSSL used is the 1.0.2.

With OpenSSL, including AES.h, we can encrypt using AES in this way:

Figure 51 - Aes C usage

Char *key; //String containing the key

unsigned char IN[16] = “…….”;

unsigned char OUT[16] = “…….”;

AES_KEY aes; //structure to hold the key

AES_set_encrypt_key (key, 128, &aes);

AES_encrypt (IN , OUT , &aes); // final encryption

89

The CMAC software structure is as follows:

SOURCE FILE HEADER FILE

 cmac.cpp cmac.h
 #include “cmac.h”

 #include <openssl/aes.h>

The test file main.cpp (#include “cmac.h”) produces the following screen

outputs:

Figure 52 - CMAC C test file output

Implementation Interface

90

6. MKA Key Hierarchy HW Implementation

After the conceptual and algorithmic description of the AES and the AES-

CMAC ciphers, of AES KEY WRAP and the software implementation of the

MKA Key Hierarchy, it’s possible to illustrate the different hardware

architectures to implement them.

6.1. AES and Key Expansion modules

Concerning the AES encryption algorithm, the attention must be focused to

the SubBytes() transformation which is the most expensive step of the whole

AES cipher in terms of resources and presents the longest critical path (see

Sec. 3.1.1). The byte substitution is performed by the S-box which is byte

oriented, so to substitute the whole State (128-bit), 16 instances of the S-box

are needed: 16 S-boxes can be used in parallel in one time or less S-boxes in

more than one time (e.g. 4 S-boxes in 4 times). The S-box hardware

implementation is critical because of the computation of the multiplicative

inverse of a byte on the Galois field GF(28): as the same Rijndael cipher’s

authors and the NIST indicate, it the Extended Euclidean algorithm should be

used. This procedure is very expensive in terms of hardware delay because it

requires the integer division, which is a serial operation. As the literature

suggests [xiii], there are two usual implementations of the S-box: one based on

the lookup tables, or memory supports like the dedicated RAM or ROM

blocks on an FPGA, or one based on the Galois composite fields. The

chosen solution is the fist one.

The LUT (Look-Up Table)-based implementation of the S-box simply consists

in storing and arranging appropriately the output values of the S-box in

relation to all possible values of the input data, that is the byte to be

91

substituted. As already hinted in Sec. 3.1.1, the results is a 256 bytes table

arranged as a 16 × 16 matrix in which the most significant nibble of the input

byte selects the matrix row, while the least significant nibble of the input bytes

selects the matrix column. This solution is widely diffused because its

implementation requires a very few effort and it brings to a significant gain in

terms of maximum achievable frequency. Anyway it can be almost expensive

in terms of area consumption. The LUT-based S-box is usually employed

when the AES cipher is implemented on an FPGA device, while it’s usually

discharged for the ASIC realizations.

Concerning the other AES round transformations, ShiftRows(), MixColumns()

and AddRoundKey(), they do not leave space to any optimization or

significant architectural variation. Focusing on the overall architecture of an

AES cipher, there are many possibilities. The primary aspect concerns the

number of rounds physically implemented. The structure created works with

only one round used iteratively: in this case some multiplexer are needed to

bypass the preliminary AddRoundKey() transformation and the MixColumns()

one in the last round execution and the system is characterized by a low area

consumption, even if with a higher latency.

92

Figure 53 - AES rolled architecture

Lastly some few words can be spent about the key expander (see Sec. 3.2).

The first point faced when projecting this module is the decision of when

perform the key expansion: we chose to perform the expansion before the

encryption, storing all the round keys in appropriate memory supports,

instead of computing the round keys at runtime (or ”on the fly”).

In Figure 54 we can see the AES core architecture with a buffer on the output

to store the value.

93

Figure 54 - Implemented AES core

Each time that a start signal occurs, the FSM enables the AES core, this one

processes the data block with the help of the counter that drives the

multiplexers and when the encrypted block is ready this is signaled through a

last step signal, while the FSM return to the idle state. The Figure 55 shows

the states map of the AES core.

94

Figure 55 - AES core finite state machine

6.2. CMAC module

The other implemented module is the cmac module. It instantiates the two

previously described modules: aes_core and key_expander.

(a)

(b)

Figure 56 - (a) CMAC block diagram, (b) CMAC instantiated modules in Verilog

95

Figure 57 - cmac finite state machine

From the above cmac finite state machine figure, we can understand how the

module is following the AES-CMAC algorithm steps described in rfc4493: the

first step is the sub-key generation algorithm, which creates the two keys K1

and K2 (cmac_sub_key state).

After that, the cmac core algorithm is implemented; the output is given on a

128bit bus together with the result_ready pin (see Figure 56a).

6.3. AES Key Wrap module

96

Another module that instantiates the same aes_core and key_expander

modules as the cmac module, is the key_wrap module which implements the

AES Key Wrap algorithm described is Sec. 3.6.

In the following figure we have the key_wrap diagram box.

Figure 58 - key_wrap block diagram

The output of the wrapping algorithm is given on three buses of 64 bits, as

this is the way it is defined in the rfc3394. As it will be described in the

following mka module (Sec. 6.5), these buses will be merged in a bigger

register for the needed calculations.

The next figure shows the finite state machine of the key_wrap module.

97

Figure 59 - key_wrap finite state machine

98

6.4. KDF module

The kdf module implements the key derivation function described in the

802.1X-2010 standard (see Sec. 4.5.2.1.). It implements the cmac module

described in Sec. 6.2 as we can see from the block diagram in the following

figure.

Figure 60 - kdf block diagram

The output is on a 128bit bus, and a kdf_ready pin is present. As described in

the MKA Key Hierarchy algorithm, the kdf module will be started twice to

have the keys ICK and KEK as output.

99

Here is the kdf finite state machine.

Figure 61 - kdf finite state machine

6.5. MKA module

100

The mka module is the top-level module of the MKA Key Hierarchy

implementation.

It implements all the previous mentioned modules, as showed in the following

figure, taken from the Verilog code.

(a)

(b)

Figure 62 - mka implementing all the modules: (a) block diagram, (b) Verilog code

101

Figure 63 - mka finite state machine

The above mka finite state machine reflects the algorithmic steps of the MKA

Key hierarchy protocol.

102

The mka module receives the SAK serially on a 32bit bus: every received

32bit chunks is stored in a 128bit register. This holds also for the CKN and

CAK inputs.

When all the three internal registers, linked to the three input keys, are full

(that is each of the four chunks of every key has been stored), the

input_ready pin is set and the internal state change to MKA_KEK.

This state is responsible if the creation of the KEK: the kdf module is involved

giving it the correct kek label as input.

With the obtained KEK the Key Wrap can be applied to the SAK, which is

stored in the internal SAK register.

After, the ICK is derived and then the related ICV. All the results are stored in

internal registers; at the end, when all the wanted values are ready, the

output is ready and is sending in series on a 32bit bus.

In the following table are showed the relative CPU clock cycles for each

module during the mka module test bench.

Module Clock cycles

cmac 100

key_wrap 246

kdf 95

mka 525

Figure 64 - modules performance in clock cycles

As visible from the above table the most expensive in time is the key_wrap

module: to notice that the mka module instantiates all the other modules, in

particular twice the kdf module.

103

Figure 65 - mka wave plot

6.6. FPGA Synthesis

The implemented system, described in Sec. 5, has been synthesized both on

a FPGA Stratix V of Altera and on a 65 ηm standard-cell ASIC technology, to

verify the respect of the design constraints (i.e. support of the maximum

frequency of 125MHz) and document the statistics relevant to the area

consumption. Even if the final target is the realization of an ASIC device, the

synthesis on FPGA have been necessary to confirm that the implemented

system was able to be used on the FPGA demo board.

The TX MACsec and RX MACsec modules have been synthesized on the

FPGA Stratix V 5SGXMABK3H40C4 of Altera, using the Altera software

Quartus II (version 14.1). The selected device is an high performance and

high size FPGA realized through the 28-nm TSMC process technology and

has logic cores supplied with 0.9 V or 0.85 V. The programmable logic cores

are called ALM (adaptive logic module) and they implement LUT-based logic

functions. Each ALM contains a variety of LUT-based resources that can be

divided between two combinational adaptive LUTs (ALUTs) and four

registers, as it is depicted in Figure 66.

104

Figure 66 - ALM high-level block diagram for Stratix V devices

Furthermore a Stratix V device is provided with embedded block dedicated to

specific functionalities, as DSP blocks or M20K memory blocks.

For the synthesis they have been specified the following constraints:

- clock period = 8 ηs (corresponding to the frequency of 125 MHz);

The synthesis results are reported in the following table.

105

Figure 67 - FPGA synthesis results

6.7. Synthesis on standard-cell ASIC technology

The mka module has been synthesized also on a 65 ηm standard-cell

technology, using again a clock period of 8 ηs as constraint: the following

table reports the statistics related to the area occupation (in kgates) and to

the frequency that the module can support.

Module Frequency Area occupancy (kgate)

mka 125 MHz 102,38

Figure 68 – standard-cell ASIC technology synthesis

Compiler
Optimization mode

Logic utilization

(ALMs)
Total

Registers
Total

pins
Max

Frequency
@ 85C

BALANCED 11477/359200 (3%) 9938 278/864 135,26 MHz

106

7. Conclusions

This work entered Renesas project flow, which goal is to secure the next

generation Ethernet networks that will replace the heterogeneous network

automotive environment present nowadays.

The realized system has been integrated as the above layer of the MACsec

message exchange protocol developed by Renesas’ security team.

Compliant with IEEE 802.1X-2010 standard, it is able to supply the essential

security keying material for the whole MACsec protocol, which will add

security services to the automotive area Ethernet networks.

The synthetized modules fit the company’s requirements in order of area

occupancy and latency.

All these aspects makes the realized system a good entry point for the

security requirements of the automotive field and to create a MACsec module

which is fully compliant with the IEEE 802.1AE standard.

107

108

Bibliography	

i Kerstin Lemke · Christof Paar · Marko Wolf (Eds.) - Embedded Security in
Cars

ii Ethernet Backbone in Car: Hype or Reality?
 http://www.eetimes.com/document.asp?doc_id=1319157

iii NIST - Recommendation for Block Cipher Modes of Operation
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

iv Advanced Encryption Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

v NIST - Advanced Encryption Standard (AES)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

vi JH. Song, R. Poovendran, J. Lee, T. Iwata - The AES-CMAC Algorithm
https://tools.ietf.org/html/rfc4493

vii J. Schaad, R. Housley - Advanced Encryption Standard (AES) Key Wrap
Algorithm
https://www.ietf.org/rfc/rfc3394.txt

viii IEEE Computer Society – Media Access Control (MAC) Security

ix Cisco - Identity-Based Networking Services: MAC Security

x IEEE Computer Society - Port-based Network Access Control

xi Class Cipher
http://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html

xii NIST - CMAC test vectors
http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip

109

xiii A. Satoh, S. Morioka, K. Takano and S. Munetoh - A Compact Rijndael
Hardware Architecture with S-Box Optimization. In: ed. by ASIACRYPT.
2001.

	

110

