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Abstract 
 

Nowadays the automotive environment is more and more characterized by 

several IT applications: from infotainment systems to C2C (Car to Car) or 

C2X (Car to external) solutions, as LTE or Wi-Fi connections. This, together 

with engine and other components controls systems, reflects on many 

different internal and external networks, which can be found inside a car. 

Carmakers are going in the direction of replacing much of these networks by 

Ethernet networks, to achieve more throughput in order to satisfy clients’ 

expectations.  

 

This work is placed in the context of the deployment of a security module for 

the automotive requirements compatible with the Ethernet standard, 

managed by the security team of Renesas Electronics Europe GmbH, one of 

the world’s biggest microcontrollers manufacturer. 

After a deep analysis of the main degrees of freedom in the project 

workspace, a hardware component has been implemented, which acts as 

accelerator for encryption keys generation, compliant with the MKA Key 

Hierarchy protocol in the 802.1X-2010 standard. 

A testing phase has followed to validate the implemented MKA KH core by an 

algorithmic point of view: for this purpose, with the help of the official National 

Institute of Standards and Technology (NIST) test vectors, a Java software 

has been realized, which generates the required encryption keys compliant 

with the MKA KH algorithm.  

 

Then the compliancy with respect to the IEEE 802.1AE standard and the full 

integration inside the MAC IP has been verified.  

The realized system has been synthesized both on a FPGA Stratix V of 

Altera and on a 65ηm standard-cell ASIC technology: the system shows an 
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occupation of 9938 registers and 11477 ALMs on the FPGA and 

102,38kgates on the standard-cell technology. The maximum reachable 

throughput at 125MHz is 1Gbps.  
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1. Security in automotive 

1.1. Introduction 
 

With the following dissertation I would like to focus on IT security, in particular 

on security related to the automotive field. Over the last two decades vehicles 

have silently but dramatically changed into mobile interactive systems already 

carrying dozens of digital microprocessors, various external radio interfaces, 

and several hundred megabytes of embedded software. In fact, information 

and communication technology is the driving force behind most innovations in 

the automotive industry, with perhaps 90% of all innovations in vehicles 

based on digital IT systems.  

 

Todays in-vehicle IT architectures are dominated by a large network of 

interactive, software driven digital microprocessors called electronic control 

units (ECU). However, ECUs relying on information received from open 

communication channels created by other ECUs or even other vehicles that 

are not under its control, leaves the doors wide open for manipulations or 

misuse.  

Future cars will become even more dependent on IT security due to the 

following developments:  

• It is predicted that an increasing number of ECUs (electronic control 

units) will be reprogrammable, a process that must be protected.   

• Many cars will communicate with the environment in a wireless fashion, 

which makes strong security a necessity.   

• New business models (e.g., time-limited flash images or pay-per-use 

infotainment content) will become possible for the car industry, but will 

only be successful if abuse can be prevented.   
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• There will be an increasing number of legislative demands which can 

only be solved by means of modern IT security functions, such as 

tamper- resistant tachographs, secure emergency call functions, secure 

road billing etc.   

• Increasing networking of cars will allow the collection of data for each 

driver (e.g., driving behavior, locations visited), which will put high 

demands on privacy technology.   

• Future cars will often be personalized, which requires a secure 

identification of the driver.   

• Electronic anti-theft measures will go beyond current immobilizers, e.g., 

by protecting individual components.  

…and many others…  

 

 
Figure 1 – Automotive ECUs Controllers by 2020 
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This “digital revolution” enables very sophisticated solutions considerably 

increasing flexibility, safety and efficiency of modern vehicles. It further helps 

saving fuel, weight, and costs.  

Whereas in-vehicle IT safety (i.e., protection against [random] technical 

failures) is already a relatively well-established (if not necessarily well-

understood) field, the protection of vehicular IT systems against systematic 

manipulations has only very recently started to emerge. In fact, automotive IT 

systems were never designed with security in mind. But with the increasing 

application of digital software and various radio interfaces to the outside world 

(including the Internet), modern vehicles are becoming even more vulnerable 

to all kinds of malicious encroachments like hackers or malware. This is 

especially noteworthy, since in contrast to most other IT systems, a 

successful malicious encroachment on a vehicle will not only endanger 

critical services or business models, but can also endanger human lives. 

Thus strong security measures should be mandatory when developing 

vehicular IT systems. Today most vehicle manufacturer (hopefully) 

incorporates security as a design requirement. However, realizing 

dependable IT security solutions in a vehicular environment considerably 

differs from realizing IT security for typical desktop or server environments. In 

a typical vehicular attack scenario an attacker, for instance, has extended 

attack possibilities (i.e., insider attacks, offline attacks, physical attacks) and 

could have many different attack incentives and attack points (e.g., 

tachometer manipulations by the vehicle owner vs. theft of the vehicle 

components vs. industrial espionage).  

 

1.2. How secure is your car? 
 

In a talk at the Black Hat security conference in Las Vegas [i], Charlie Miller 

and Chris Valasek presented the results of a broad analysis of dozens of 
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different car makes and models, assessing the vehicles’ schematics for the 

signs that hint at vulnerabilities to auto-focused hackers. The result is a kind 

of handbook of ratings and reviews of automobiles for the potential 

hackability of their networked components.  

They examined how a remote attack might work on 24 different cars. 

“It really depends on the architecture: If you hack the radio, can you send 

messages to the brakes or the steering? And if you can, what can you do with 

them?” said Valasek, director of vehicle security research at the security 

consultancy IOActive. 

 

In the two researchers’ analysis, three vehicles were ranked as “most 

hackable”: the 2014 models of the Infiniti Q50 and Jeep Cherokee and the 

2015 model of the Cadillac Escalade. The full results, summarized in the 

chart below, show that the 2010 and 2014 Toyota Prius didn’t fare well either. 
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Figure 2 - Hackablity results: A plus sign represents “more hackable,” a minus sign “less hackable.” 

 

All the cars’ ratings were based on three factors: the first was the size of their 

wireless “attack surface”—features like Bluetooth, Wi-Fi, cellular network 

connections, keyless entry systems, and even radio-readable tire pressure 

monitoring systems. Any of those radio connections could potentially be used 

by a hacker to find a security vulnerability and gain an initial foothold onto a 

car’s network. Second, they examined the vehicles’ network architecture, how 

much access those possible footholds offered to more critical systems 

steering and brakes. And third, Miller and Valasek assessed what they call 

the cars’ “cyberphysical” features: capabilities like automated braking, parking 
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and lane assist that could transform a few spoofed digital commands into an 

actual out-of-control car. 

Miller and Valasek say that within the Infinity Q50’s network, those radio and 

telematic components were directly connected to engine and braking 

systems. And the sedan’s critical driving systems had computer-controlled 

features like adaptive cruise control and adaptive steering that a hacker could 

potentially hijack to physically manipulate the car. 

The researchers pointed to Audi’s A8, by contrast, as an example of a strong 

network layout. Its wireless features were separated from its driving functions 

on its internal network, with a gateway that would block commands sent to 

steering or brakes from any compromised radios. 

 

1.3. Ethernet backbone in cars 
 

In the late period we are moving in the direction where proprietary 

technologies in the automotive field, especially in transmission’s physical 

layer, will be replaced with standard ones.  

 

My thesis has been developed in cooperation with Renesas Electronics 

Corporation, one of the world's largest makers of semiconductor systems for 

mobile phones and automotive applications. 

 

Starting from leading chip companies as Broadcom and Renesas, they think 

carmakers are coming around at last to the wisdom of leveraging standard 

technologies such as Ethernet, already well proven outside the car marketii. 

 

Carmakers nowadays, and I would say people in general, are paying more 

attention to electronic devices and the innovation they are carrying with, 

instead of a car’s horsepower. They need to make sure their cars can 
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accommodate everything, from a navigation system to displays and other 

gadgets that consumers use inside a car. And this is true not only for high-

level cars. 

Inside a car today there are many independents networks. Each automotive 

network technology such as low-voltage differential signaling (LVDS), media-

oriented systems transport (MOST), and the controller area network (CAN), is 

connected to different electronics. They don't interoperate. We think Ethernet 

will replace these networks in some years.  

Think about our smartphones, tablets and notebooks; our quality 

expectations are higher and higher. Would we be satisfied with a delay 

suffering black/white low-resolution rear camera in our car? And it’s quite 

normal today to think about LTE networks inside cars. That’s why the 

bandwidth needed for in-car networking grows exponentially. And scalability 

is another important feature carmakers are interested in; in fact they are 

increasingly looking to OPEN Alliance SIG, an open industry consortium 

designed to encourage wide-scale adoption of Ethernet-based networks as 

the standard in automotive networking applications, partner of Renesas as 

well. 
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Figure 3 - In-Car Networking Scenario 

 

As we can see from Figure 3 the expectations in the next few years are about 

Ethernet to coexist with low-bandwidth standards like CAN.  

The backbone however will be Ethernet-driven. The CAN, MOST, LIN and 

others will continue to exist on a small-scale basis, but Ethernet will drive the 

majority of the work. We need a security solution to protect Ethernet 

connections inside the car environment. 

After a general overview of cryptography and encryption algorithms, in Sec. 2 

I will deal with MACsec, a security protocol for Ethernet networks.  

 

 

 2012 2020 

Engine control Mix of high speed CAN 
network & Flexary 

Mix of high speed CAN 
network & Ethernet/IP Transmission 

Traction control 

Suspension control CAN network & Flexary CAN, Flexary and 
Ethernet/IP Breaking control 

Active Safety 

Passive Safety 

Camera-based ADAS LVDS >> Ethernet/IP (2013) Ethernet/IP 

Windows CAN & LIN CAN & LIN 
HVAC & comfort 

Lighting 

Door and seats 

AV entertainment CAN + MOST CAN + MOST + Ethernet/IP 
Device integration 

OBDX CAN & Ethernet/IP Ethernet/IP 
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2. Automotive and cryptography  
 

Even though security depends on much more than just cryptographic 

algorithms – a robust overall security design including secure protocols and 

organizational measures are needed as well – crypto schemes are in most 

cases the atomic building blocks of a security solution. The problem in 

embedded applications is that they tend to be computationally and memory 

constrained due to cost reasons. (Often they are also power limited, but, 

since automotive applications are often powered by their own battery, low-

power crypto is not such an important topic in the car context).  

So the main goal is to implement secure crypto algorithms on small devices 

at acceptable running times.  

 

Crypto schemes are divided into two families: symmetric and asymmetric 

algorithms. The first group is mainly used for data encryption and message 

integrity checks. Symmetric algorithms tend to run relatively fast and often 

need little memory resources. There exists a wealth of established 

algorithms, with the most prominent representatives being the block ciphers 

DES (Data Encryption Standard) and AES (Advanced Encryption Standard). 

The family of stream ciphers, as we will see later, can be even more efficient 

than block ciphers and are, thus, sometimes preferred for embedded 

applications. In almost all cases it is a wise choice to use established, proven 

algorithms rather than unproven or self-developed ones. 
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Figure 4 - Symmetric vs Asymmetric Cryptography 

 

 

The second family of schemes, asymmetric or public-key algorithms, is very 

different. They are based on hard number theoretical problems and involve 

complex mathematical computations with very long numbers, commonly in 

the range of 160–4048 bits, depending on the algorithm and security level. 

Their advantage, however, is that they offer advanced functions such as 

digital signatures and key distribution over unsecure channels. For common 

automotive applications such as secure flashing, public-key algorithms are 

often preferred. The problem here is the computational requirement of public-

key schemes. Embedded processors in the automotive domain are often only 

equipped with 8-bit and 16-bit processors clocked at moderate frequencies 

of, say, below 10 MHz. Running computationally expensive public-key 

algorithms on such processors can result in unacceptably long execution 

times, for instance several seconds for the generation of a digital signature. 

For this reason, it is very important that a smart parameter choice together 

with the latest implementation techniques are being employed. 
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2.1. Symmetric Cryptography 

Symmetric-key algorithms are algorithms for cryptography that use the same 

cryptographic keys for both encryption of plaintext and decryption of 

ciphertext. The keys may be identical or there may be a simple 

transformation to go between the two keys.  

 

∀p∈ P,k ∈ K :D(k,E(k, p)) = p
 

Figure 5 - Symmetric Key formal definition 

 

In Figure 5 we can see the characterized equation of the symmetric 

cryptography, where p is the plaintext belonging to the plaintext space P, c is 

the ciphertext belonging to the ciphertext space C and k is the shared secret 

key belonging to the key space K. 

The keys, in practice, represent a shared secret between two or more parties 

that can be used to maintain a private information link. This requirement that 

both parties have access to the secret key is one of the main drawbacks of 

symmetric key encryption, in comparison to public-key encryption.  

 

2.2. Operation modes 
 

Symmetric cryptography can be implemented using either Stream ciphers or 

Block ciphers. 
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2.2.1. Stream ciphers 
 

With stream ciphers plaintext digits are combined with a pseudorandom 

cipher digit stream (keystream). In a stream cipher each plaintext digit is 

encrypted one at a time with the corresponding digit of the keystream, to give 

a digit of the ciphertext stream. 

 

 

 
Figure 5 - Stream cipher general schema 

 

2.2.2. Block ciphers 
 

Block ciphers can operate into different modes:  

• ECB (Electronic CodeBook) 

• CBC (Cipher Block Chaining) 

• CFB (Cipher FeedBack) 

• OFB (Output FeedBack) 

• CTR (Counter) 

In the following sections all these modes are described in detail [iii]. 
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2.2.2.1. ECB – Electronic CodeBook 
 

The Electronic Codebook (ECB) mode is a confidentiality mode that features, 

for a given key, the assignment of a fixed ciphertext block to each plaintext 

block, analogous to the assignment of code words in a codebook. The 

Electronic Codebook (ECB) mode is defined as follows: 

 

 

 
 

Figure 6 - ECB mode schema 

 

Ci = Ek (Pi )
Pi = Dk (Ci )
!
"
#

 
 

Figure 7 - ECB equations 

 

In ECB encryption and ECB decryption, multiple forward cipher functions and 

inverse cipher functions can be computed in parallel. 

 

In ECB redundancies can be present, since same plaintext blocks will have 

the same ciphertext.  This will bring the algorithm subjected to attacks of 

cryptanalysis. 
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With ECB we don’t have error propagation, i.e. if one block is received 

corrupted no other block will suffer for the error.  

 

2.2.2.2. CBC – Cipher Block Chaining 
 

The Cipher Block Chaining (CBC) mode is a confidentiality mode whose 

encryption process features the combining (“chaining”) of the plaintext blocks 

with the previous ciphertext blocks. The CBC mode requires an IV to combine 

with the first plaintext block (Figure 9). The IV need not be secret, but it must 

be unpredictable. Also, the integrity of the IV should be protected. The CBC 

mode is defined as follows:   

 

 
Figure 8 - CBC mode schema 

 

Ci = Ek (Pi ⊕Ci−1)
Pi =Ci−1⊕Dk (Ci )
C0 = IV

#

$
%

&
%

 
 

Figure 9 - CBC equations 
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In CBC encryption, the first input block is formed by exclusive-ORing the first 

block of the plaintext with the IV. The forward cipher function is applied to the 

first input block, and the resulting output block is the first block of the 

ciphertext. This output block is also exclusive-ORed with the second plaintext 

data block to produce the second input block, and the forward cipher function 

is applied to produce the second output block. This output block, which is the 

second ciphertext block, is exclusive-ORed with the next plaintext block to 

form the next input block. Each successive plaintext block is exclusive-ORed 

with the previous output/ciphertext block to produce the new input block. The 

forward cipher function is applied to each input block to produce the 

ciphertext block.  

In CBC decryption, the inverse cipher function is applied to the first ciphertext 

block, and the resulting output block is exclusive-ORed with the initialization 

vector to recover the first plaintext block. The inverse cipher function is also 

applied to the second ciphertext block, and the resulting output block is 

exclusive-ORed with the first ciphertext block to recover the second plaintext 

block. In general, to recover any plaintext block (except the first), the inverse 

cipher function is applied to the corresponding ciphertext block, and the 

resulting block is exclusive-ORed with the previous ciphertext block.  

In CBC encryption, the input block to each forward cipher operation (except 

the first) depends on the result of the previous forward cipher operation, so 

the forward cipher operations cannot be performed in parallel. In CBC 

decryption, however, the input blocks for the inverse cipher function, i.e., the 

ciphertext blocks, are immediately available, so that multiple inverse cipher 

operations can be performed in parallel. 
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2.2.2.3. CFB – Cipher FeedBack 
 

The Cipher Feedback (CFB) mode is a confidentiality mode that features the 

feedback of successive ciphertext segments into the input blocks of the 

forward cipher to generate output blocks that are exclusive-ORed with the 

plaintext to produce the ciphertext, and vice versa. The CFB mode requires 

an IV as the initial input block. The IV need not be secret, but it must be 

unpredictable. 

The CFB mode also requires an integer parameter, denoted s, such that 1 ≤ s 

≤ b. In the specification of the CFB mode below, each plaintext segment (P#
j) 

and ciphertext segment (C#
j) consists of s bits. The value of s is sometimes 

incorporated into the name of the mode, e.g., the 1-bit CFB mode, the 8-bit 

CFB mode, the 64-bit CFB mode, or the 128-bit CFB mode.  

The CFB mode is defined as follows: 
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Figure 10 - CFB Encryption 
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Figure 11 - CFB Decryption 

For j=2…n 

For j=1,2…n 
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For j=1,2…n 
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In CFB encryption, the first input block is the IV, and the forward cipher 

operation is applied to the IV to produce the first output block. The first 

ciphertext segment is produced by exclusive-ORing the first plaintext 

segment with the s most significant bits of the first output block. (The 

remaining b-s bits of the first output block are discarded.) The b-s least 

significant bits of the IV are then concatenated with the s bits of the first 

ciphertext segment to form the second input block. An alternative description 

of the formation of the second input block is that the bits of the first input 

block circularly shift s positions to the left, and then the ciphertext segment 

replaces the s least significant bits of the result.  

The process is repeated with the successive input blocks until a ciphertext 

segment is produced from every plaintext segment. In general, each 

successive input block is enciphered to produce an output block. The s most 

significant bits of each output block are exclusive-ORed with the 

corresponding plaintext segment to form a ciphertext segment. Each 

ciphertext segment (except the last one) is “fed back” into the previous input 

block, as described above, to form a new input block. The feedback can be 

described in terms of the individual bits in the strings as follows: if i1i2…ib is 

the jth input block, and c1c2…cS is the jth ciphertext segment, then the (j+1)th 

input block is is+1is+2…ib c1c2…cS. 

 

The CFB mode is illustrated in Figure 12. 

 



18 

 
Figure 12 - CFB Mode 

 

In CFB decryption, the IV is the first input block, and each successive input 

block is formed as in CFB encryption, by concatenating the b-s least 

significant bits of the previous input block with the s most significant bits of 

the previous ciphertext. The forward cipher function is applied to each input 

block to produce the output blocks. The s most significant bits of the output 

blocks are exclusive-ORed with the corresponding ciphertext segments to 

recover the plaintext segments.  

In CFB encryption, like CBC encryption, the input block to each forward 

cipher function (except the first) depends on the result of the previous forward 

cipher function; therefore, multiple forward cipher operations cannot be 

performed in parallel. In CFB decryption, the required forward cipher 
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operations can be performed in parallel if the input blocks are first 

constructed (in series) from the IV and the ciphertext. 

 

2.2.2.4. OFB – Output FeedBack 
 

The Output Feedback (OFB) mode is a confidentiality mode that features the 

iteration of the forward cipher on an IV to generate a sequence of output 

blocks that are exclusive-ORed with the plaintext to produce the ciphertext, 

and vice versa. The OFB mode requires that the IV is a nonce, i.e., the IV 

must be unique for each execution of the mode under the given key; the 

generation of such IVs is discussed in Appendix C. The OFB mode is defined 

as follows: 
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Figure 13 - OFB Encryption 
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Figure 14 - OFB Decryption 

 

In OFB encryption, the IV is transformed by the forward cipher function to 

produce the first output block. The first output block is exclusive-ORed with 

the first plaintext block to produce the first ciphertext block. The forward 

cipher function is then invoked on the first output block to produce the second 

output block. The second output block is exclusive-ORed with the second 

plaintext block to produce the second ciphertext block, and the forward cipher 

function is invoked on the second output block to produce the third output 

block. Thus, the successive output blocks are produced from applying the 

forward cipher function to the previous output blocks, and the output blocks 

are exclusive-ORed with the corresponding plaintext blocks to produce the 

ciphertext blocks. For the last block, which may be a partial block of u bits, 

the most significant u bits of the last output block are used for the exclusive-

OR operation; the remaining b-u bits of the last output block are discarded.  

 

For j=2…n 

For j=1,2…n 

For j=1,2…n-1 



21 

 
Figure 15 - OFB Mode 

 

In OFB decryption, the IV is transformed by the forward cipher function to 

produce the first output block. The first output block is exclusive-ORed with 

the first ciphertext block to recover the first plaintext block. The first output 

block is then transformed by the forward cipher function to produce the 

second output block. The second output block is exclusive-ORed with the 

second ciphertext block to produce the second plaintext block, and the 

second output block is also transformed by the forward cipher function to 

produce the third output block. Thus, the successive output blocks are 

produced from applying the forward cipher function to the previous output 

blocks, and the output blocks are exclusive-ORed with the corresponding 

ciphertext blocks to recover the plaintext blocks. For the last block, which 

may be a partial block of u bits, the most significant u bits of the last output 
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block are used for the exclusive-OR operation; the remaining b-u bits of the 

last output block are discarded. 

In both OFB encryption and OFB decryption, each forward cipher function 

(except the first) depends on the results of the previous forward cipher 

function; therefore, multiple forward cipher functions cannot be performed in 

parallel. However, if the IV is known, the output blocks can be generated prior 

to the availability of the plaintext or ciphertext data.  

The OFB mode requires a unique IV for every message that is ever 

encrypted under the given key. If, contrary to this requirement, the same IV is 

used for the encryption of more than one message, then the confidentiality of 

those messages may be compromised. In particular, if a plaintext block of 

any of these messages is known, say, the jth plaintext block, then the jth 

output of the forward cipher function can be determined easily from the jth 

ciphertext block of the message. This information allows the jth plaintext block 

of any other message that is encrypted using the same IV to be easily 

recovered from the jth ciphertext block of that message.  

Confidentiality may similarly be compromised if any of the input blocks to the 

forward cipher function for the encryption of a message is designated as the 

IV for the encryption of another message under the given key.  

The OFB mode is illustrated in Figure 15. 

 

2.2.2.5. CTR – Counter 
 

The Counter (CTR) mode is a confidentiality mode that features the 

application of the forward cipher to a set of input blocks, called counters, to 

produce a sequence of output blocks that are exclusive-ORed with the 

plaintext to produce the ciphertext, and vice versa. The sequence of counters 

must have the property that each block in the sequence is different from 

every other block. This condition is not restricted to a single message: across 
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all of the messages that are encrypted under the given key, all of the 

counters must be distinct. In this recommendation, the counters for a given 

message are denoted T1, T2, … , Tn. Given a sequence of counters, T1, T2, … 

, Tn, the CTR mode is defined as follows: 
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Figure 16 - CTR Encryption 
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Figure 17 - CTR Decryption 

 

 

In CTR encryption, the forward cipher function is invoked on each counter 

block, and the resulting output blocks are exclusive-ORed with the 

corresponding plaintext blocks to produce the ciphertext blocks. For the last 

block, which may be a partial block of u bits, the most significant u bits of the 

last output block are used for the exclusive-OR operation; the remaining b-u 

bits of the last output block are discarded.  

In CTR decryption, the forward cipher function is invoked on each counter 

block, and the resulting output blocks are exclusive-ORed with the 

corresponding ciphertext blocks to recover the plaintext blocks. For the last 

block, which may be a partial block of u bits, the most significant u bits of the 

For j=1,2…n 

For j=1,2…n-1 

For j=1,2…n 

For j=1,2…n-1 
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last output block are used for the exclusive-OR operation; the remaining b-u 

bits of the last output block are discarded.  

In both CTR encryption and CTR decryption, the forward cipher functions can 

be performed in parallel; similarly, the plaintext block that corresponds to any 

particular ciphertext block can be recovered independently from the other 

plaintext blocks if the corresponding counter block can be determined. 

Moreover, the forward cipher functions can be applied to the counters prior to 

the availability of the plaintext or ciphertext data. 

CTR mode is illustrated in Figure 18. 

 

 
Figure 18 - CTR Mode 
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2.2.3. Stream vs Block Ciphers 
 

Stream ciphers are typically faster than block, but that has it's own price.  

Block ciphers typically require more memory, since they work on larger 

chunks of data and often have "carry over" from previous blocks, whereas 

since stream ciphers work on only a few bits at a time they have relatively low 

memory requirements (and therefore cheaper to implement in limited 

scenarios such as embedded devices, firmware, and esp. hardware). 

Stream ciphers are more difficult to implement correctly, and prone to 

weaknesses based on usage and the keystream has very strict requirements.  

 

Because block ciphers encrypt a whole block at a time (and furthermore have 

"feedback" modes which are most recommended), they are more susceptible 

to noise in transmission, that is if you mess up one part of the data, all the 

rest is probably unrecoverable. Whereas with stream ciphers bytes are 

individually encrypted with no connection to other chunks of data (in most 

ciphers/modes), and often have support for interruptions on the line.  

Also, stream ciphers do not provide integrity protection or authentication, 

whereas some block ciphers (depending on mode) can provide integrity 

protection, in addition to confidentiality.  

  

Because of all the above, stream ciphers are usually best for cases where the 

amount of data is either unknown, or continuous - such as network streams. 

Block ciphers, on the other hand, or more useful when the amount of data is 

pre-known - such as a file, data fields, or request/response protocols, such as 

HTTP where the length of the total message is known already at the 

beginning.  

This is the main reason why choosing the encryption algorithm we came up 

with a symmetric block cipher one.  
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2.3. Possible attacks 
 

The idea of security comes from the need to protect data against malicious 

users and relative attacks. Depending on the chosen algorithm, some of 

these attacks can be successful or not.  

 

In general the following types of attacks are valid under these hypothesis: 

• The adversary has access to all encrypted messages. 

• Kerckhoff Hypothesis: the adversary knows all the details of the 

encryption function but the secret key. 

 

Here we have a list of possible attacks; they refer to what the malicious user 

is in posses during the attack. 

Types of attacks: 

• Ciphertext-only attack: he (the adversary) has access to the ciphertext 

only. 

• Known-plaintext attack: he has the ciphertext and the message in clear, 

and he’s able to combine them in pairs. 

• Chosen-plaintext attack: he can obtain the ciphertexts for arbitrary 

plaintexts. 

 

The previous types of attacks characterize all the so-called force brute 

attacks.  

 

2.3.1. Exhaustive key search 
 

Exhaustive key search is an example of known-plaintext attack, that can 

become a ciphertext-only attack if we have redundancies in the plain text.  
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The adversary has ( p , c ) pairs and he has to find the key that generates c 

from p. 

Since the key is on k bit we have 2k  possible keys. The exhaustive key 

search tells the user to try all the possible keys to check which one can 

encrypt the message p on the ciphertext c. The main issue in this approach is 

the presence of false positive keys: different keys can encrypt the same 

message p into the same ciphertext c, so the found key can be the correct 

one for the given message but not for all the others. 

 

The number of pairs ( p , c ) that we need to avoid false positives is: 
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n
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Figure 19 - number of pairs to avoid false positive 

 

where k is the key’s number of bits and n is the number of bits of the 

message. 

 

2.3.2. Data exhaustive analysis  
 

Data exhaustive analysis, also called dictionary attack, is a known-plaintext 

attack. The adversary builds up a table with enough pair ( pi , ci ) to reuse 

them later to decrypt similar encrypted messages. Longer the ciphertext are 

harder to acquire all the needed pairs will be.  
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2.3.3. Cryptanalysis 
 

Besides force brute attacks we have also cryptanalysis algorithms, which can 

be divided in: 

• Linear Cryptanalysis (LC): used for block and stream ciphers. 

• Differential Cryptanalysis (DC): used for block and stream ciphers and 

hash functions. 

2.4. Computational security 
 

The encryption algorithm is said to be computationally secure if the best 

attack is too complex for the adversary. 

 

The attack complexity can be divided in: 

• Data Complexity 

• Storage Complexity 

• Processing Complexity 

 

A security schema is computationally secure to the previous described force 

brute attacks if: 

 

• The key k is big enough (>64 bit), to avoid exhaustive key search. 

• The messages’ length is big enough (>64 bit), to avoid data exhaustive 

analysis.  

 

2.5. Attacks in automotive systems 
 

To prevent cyber attacks on vehicles, security solutions must be designed for 

automotive systems. There exist, however, a number of fundamental 
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limitations when designing such solutions. First, the ECUs inside the vehicles 

have limitations in computational power, memory, bandwidth, and power 

consumption. Second, the ECUs operate in a real-time environment where 

queuing of messages and delays are not tolerated. The data received from 

sensors on a vehicle must be processed in real-time, and decisions to affect 

the correct actuators must be made with no imposed delay. The design of 

security solutions must take the real-time constraint into consideration. Third, 

the traffic patterns for vehicular communication differ from traffic patterns in 

traditional IP networks. For example, data on the CAN bus in the in-vehicle 

network is broadcast. Vehicular ad hoc networks could be formed 

spontaneously in vehicle-to-vehicle and vehicle-to-roadside communication. 

In addition, automotive manufacturers could establish vehicle-to-infrastructure 

environments for performing wireless diagnostics and firmware updates on 

vehicles. The different traffic patterns and communication models require 

different solutions. Thus, traditional solutions developed for IP networks 

cannot be used.  

The three most important research challenges for providing security solutions 

for automotive systems are described as follows. The vehicle allows 

interaction with the physical world, such as receiving warning signals from 

other vehicles or intersections and crossings. As a consequence, cyber 

attacks that simulate the physical world will most likely occur. Thus, a 

challenge is to verify the authenticity of incoming data to a vehicle. For 

example, a vehicle must assure that the received warning is correct and fresh 

(no replay) and that it was sent from the correct physical entity (e.g., vehicle 

or intersection).  

While authenticating that incoming data is correct is one challenge, protecting 

the listening interface from intrusions is another. Since the wireless interface 

is a listening service it could possibly be subverted and allow an attacker 

access to the in-vehicle network. Thus, providing proper mechanisms for 
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preventing intrusions is an important challenge. Firewalls to prevent 

unauthorized accesses are necessary, and logging and detection 

mechanisms are needed to detect and trace attackers. However, designing 

these security solutions to meet the real-time requirements and the limitations 

in the ECUs is a challenge.  

A third research challenge is to protect the security solutions in the in-vehicle 

network. This project defines security in this scenario. Assume various 

cryptographic keys are used to secure the wireless communication and 

access control lists are used to allow only authorized connections such that 

the wireless gateway is protected against intrusions. An attacker could 

potentially access the in-vehicle network via the OBD (on-board diagnostics) 

port by physically connecting a device to the vehicle. If the security solutions 

protect against attacks only via the wireless gateway, an attacker could 

choose to attack the in-vehicle network via the OBD instead. For example, 

the attacker could easily extract the needed cryptographic keys and update 

the access control lists such that he can execute future attacks via the 

wireless gateway. Thus, it is a challenge to protect the in-vehicle network and 

the security credentials against physical attacks via the OBD.  

 

 
Figure 20 - An example of car attack 
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The usual motivation within the criminal world will be financial gain; therefore 

a cyber attack against automotive systems could potentially provide criminals 

with a repeatable, remotely exploitable mechanism for breaking into vehicles 

for theft of vehicle contents and/or the vehicle itself. On a more sinister level, 

should criminals be keen on impacting the safety of a victim’s vehicle in some 

way then this might be achievable through cyber attack. Other criminal 

activity might just relate to hackers, where no financial gain is sought but 

merely the ability to demonstrate technical prowess through remotely 

attacking and controlling automotive systems. 
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3. AES cipher  
 

AES will be the main encryption algorithm on which the following discussed 

protocols will rely on. It belongs to the symmetric-key algorithm family. 

 

The Advanced Encryption Standard (AES), also referenced as Rijndael (its 

original name), is a specification for the encryption of electronic data 

established by the U.S. National Institute of Standards and Technology 

(NIST) in 2001. 

AES has been adopted by the U.S. government and is now used worldwide. 

It supersedes the Data Encryption Standard (DES), which was published in 

1977 [iv]. 

 

AES is based on a design principle known as a substitution-permutation 

network, combination of both substitution and permutation, and is fast in both 

software and hardware.  

AES is a variant of Rijndael, which has a fixed block size of 128 bits, and a 

key size of 128, 192, or 256 bits. By contrast, the Rijndael could work with 

block and key sizes that may be any multiple of 32 bits, both with a minimum 

of 128 and a maximum of 256 bits. 

AES operates on a 4×4 column-major order matrix of bytes, called the state, 

although some versions of Rijndael have a larger block size and have 

additional columns in the state. Most AES calculations are done in a special 

finite field. 

The key size used for an AES cipher specifies the number of repetitions of 

transformation rounds that convert the input, called the plaintext, into the final 

output, called the ciphertext. The number of cycles of repetition is as follows: 
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• 10 cycles of repetition for 128-bit keys. 

• 12 cycles of repetition for 192-bit keys. 

• 14 cycles of repetition for 256-bit keys. 

 

Each round consists of several processing steps, each containing four similar 

but different stages, including one that depends on the encryption key itself. A 

set of reverse rounds is applied to transform ciphertext back into the original 

plaintext using the same encryption key. 

 

 

 
Figure 21 - AES scheme 
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3.1. AES encryption algorithm 
 

At the start of the Cipher, the input is copied to the State array as described 

in Figure 23 [v].  

 

 
Figure 22 - State array input and output 

 

After an initial Round Key addition, the State array is transformed by 

implementing a round function 10, 12, or 14 times (depending on the key 

length), with the final round differing slightly from the first Nr -1 rounds. The 

final State is then copied to the output as described in Figure 22.  

The round function is parameterized using a key schedule that consists of a 

one-dimensional array of four-byte words derived using the Key Expansion 

routine described in Sec. 3.2.  

The Cipher is described in the pseudo code in Fig. 23.  
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Figure 23 - AES cipher suite 

 

The individual transformations - SubBytes(), ShiftRows(), MixColumns(), and 

AddRoundKey() – process the State and are described in the following 

subsections. In Figure 23, the array w[] contains the key schedule, which is 

described in Sec. 3.2. 

As shown in Figure 21, all Nr rounds are identical with the exception of the 

final round, which does not include the MixColumns() transformation.  

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])  

begin  

 

   byte  state[4,Nb] 

   state = in 

 

   AddRoundKey(state, w[0, Nb-1]) 

 

for  round = 1 step 1 to Nr-1 

���SubBytes(state)��� 

ShiftRows(state)��� 

MixColumns(state)��� 

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])  

 

end for  

 

SubBytes(state)��� 

ShiftRows(state)��� 

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])  

   

 out = state 

 

end 
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3.1.1. SubBytes() Transformation 
 

The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box).  

This S-box (Figure 25), which is invertible, is constructed by composing two 

transformations:  

1. Take the multiplicative inverse in the finite field GF(28); the element {00} is 

mapped to itself.  

2. Apply the following affine transformation (over GF(2) ):  

 

bi' = bi ⨁ b(i +4)mod8 ⨁ b(i +5)mod8 ⨁ b(i +6)mod8 ⨁ b(i +7)mod8 ⨁ ci 

 
for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit of 

a byte c with the value {63} or {01100011}. Here and elsewhere, a 

prime on a variable (e.g. b’) indicates that the variable is to be 

updated with the value on the right.  

In matrix form, the affine transformation element of the S-box can be 

expressed as: 

 

 
 

Figure 24 illustrates the effect of the SubBytes() on the State. 
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Figure 24 - SubBytes() applies the S-box to each byte of the State 

 

The S-box used in the SubBytes() transformation is presented in hexadecimal 

form in Figure 25. 

 

 
Figure 25 - S-box: substitution values for the byte xy (Hex format) 
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3.1.2. ShiftRows() Transformation 
 

In the ShiftRows() transformation, the bytes in the last three rows of the State 

are cyclically shifted over different numbers of bytes (offsets). The first row, 

r=0, is not shifted. Specifically, the ShiftRows() transformation proceeds as 

follows:  

 

s 'r,c = sr,(c+shift (r,Nb))modNb  
 

Where the shift value shift(r,Nb) depends on the row number, r, as follows 

(recall that Nb = 4):  

shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3 

 

This has the effect of moving bytes to “lower” positions in the row (i.e., lower 

values of c in a given row), while the “lowest” bytes wrap around into the “top” 

of the row (i.e., higher values of c in a given row). Figure 26 illustrates the 

ShiftRows() transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

For 0 < r < 4 and 0 ≤ c < Nb,  
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Figure 26 - ShiftRows() cyclically shifts the last three rows in the State 

 

 

3.1.3. MixClolumns() Transformation 
 

The MixColumns() transformation operates on the State column-by-column, 

treating each column as a four-term polynomial. The columns are considered 

as polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed 

polynomial a(x), given by  

 

a(x) = {03}x3 + {01}x2 + {01}x + {02}  

 

This can be written as a matrix multiplication. Let 

 s '(x) = a(x)⊗ s(x)  
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As a result of this multiplication, the four bytes in a column are replaced by 

the following: 

 

 
 

Figure 27 illustrates the MixColumns() transformation. 

 

 

 
Figure 27 - MixColumns() operates on the State column-by-column 
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3.1.4. AddRoundKey() Transformation 
 

In the AddRoundKey() transformation, a Round Key is added to the State by 

a simple bitwise XOR operation. Each Round Key consists of Nb words from 

the key schedule (Sec. 3.2). Those Nb words are each added into the 

columns of the State, such that  

 

[s'0,c  , s'1,c  , s'2,c  , s'3,c  ] = [s0,c  , s1,c  , s2,c  , s3,c  ]⊕ [wround*Nb+c  ]  
 

where [wi] are the key schedule words, and round is a value in the range 

0≤round≤ Nr. In the Cipher, the initial Round Key addition occurs when 

round=0, prior to the first application of the round function (see Figure 21). 

The application of the AddRoundKey() transformation to the Nr rounds of the 

Cipher occurs when 1 ≤ round ≤ Nr.  

The action of this transformation is illustrated in Figure 28, where l = 

round*Nb.  

 

 

 

 
Figure 28 - AddRoundKey() XORs each column of the State with a word from the key schedule 
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3.2. Key Expansion algorithm 
 

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion 

routine to generate a key schedule. The Key Expansion generates a total of 

Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words, and each 

of the Nr rounds requires Nb words of key data. The resulting key schedule 

consists of a linear array of 4-byte words, denoted [wi], with i in the range 

0≤i<Nb(Nr + 1).  

The expansion of the input key into the key schedule proceeds according to 

the pseudo code in Figure 29. 

SubWord() is a function that takes a four-byte input word and applies the S-

box (Figure 22) to each of the four bytes to produce an output word.  
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The function RotWord() takes a word [a0,a1,a2,a3] as input, performs a cyclic 

permutation, and returns the word [a1,a2,a3,a0]. The round constant word 

array, Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with xi-1 being 

powers of x (x is denoted as {02}) in the field GF(28) (note that i starts at 1, 

not 0).  

Figure 29 - Key Expansion pseudo code 

 

From Figure 29, it can be seen that the first Nk words of the expanded key 

are filled with the Cipher Key. Every following word, w[i], is equal to the XOR 

of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For 

words in positions that are a multiple of Nk, a transformation is applied to w[i-

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)  

begin  

word temp  

i = 0  

while (i < Nk)  

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])  

i = i+1  

end while  

i = Nk  

while (i < Nb * (Nr+1)]  

temp = w[i-1]  

if (i mod Nk = 0)  

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]  

else  

if (Nk > 6 and i mod Nk = 4)  

temp = SubWord(temp) 

end if 

w[i] = w[i-Nk] xor temp  

i = i + 1  

end while  

end 
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1] prior to the XOR, followed by an XOR with a round constant, Rcon[i]. This 

transformation consists of a cyclic shift of the bytes in a word (RotWord()), 

followed by the application of a table lookup to all four bytes of the word 

(SubWord()).  

It is important to note that the Key Expansion routine for 256-bit Cipher Keys 

(Nk=8) is slightly different than for 128 and 192-bit Cipher Keys. If Nk = 8 and 

i-4 is a multiple of Nk, then SubWord() is applied to w[i-1] prior to the XOR. 

 

3.3. AES Inverse cipher 
 

The Cipher transformations in Sec. 3.1 can be inverted and then 

implemented in reverse order to produce a straightforward Inverse Cipher for 

the AES algorithm. The individual transformations used in the Inverse Cipher 

-InvShiftRows(), InvSubBytes(),InvMixColumns(), and AddRoundKey() - 

process the State; they are not described in the following sections as they 

haven’t been implemented. 

 

3.4. AES operation modes 
 

Every symmetric key block cipher algorithm can work in different modes of 

operation, as described in Sec. 2.2.2.  

AES, being a symmetric block cipher, can operate in one of those modes.  

The block cipher modes ECB, CBC, OFB, CFB, CTR provide confidentiality, 

but they do not protect against accidental modification or malicious 

tampering. Modification or tampering can be detected with a separate 

message authentication code such as CBC-MAC, or a digital signature. The 

cryptographic community recognized the need for dedicated integrity 



45 

assurances and NIST responded with AES-CMAC, in a way another AES 

mode of operation [vi]. 

 

3.5. AES – CMAC 
 

AES-CMAC provides stronger assurance of data integrity than a checksum or 

an error-detecting code.  The verification of a checksum or an error-detecting 

code detects only accidental modifications of the data, while CMAC is 

designed to detect intentional, unauthorized modifications of the data, as well 

as accidental modifications. 

AES-CMAC achieves a security goal similar to that of HMAC.  

Since AES-CMAC is based on a symmetric key block cipher, AES, and 

HMAC is based on a hash function, such as SHA-1, AES-CMAC is 

appropriate for information systems in which AES is more readily available 

than a hash function. 

 

AES-CMAC uses the Advanced Encryption Standard (AES) as a building 

block.  To generate a MAC, AES-CMAC takes a secret key, a message of 

variable length, and the length of the message in octets as inputs and returns 

a fixed-bit string called a MAC.  

The core of AES-CMAC is the basic CBC-MAC.  For a message, M, to be 

authenticated, the CBC-MAC is applied to M.  There are two cases of 

operation in CMAC.  Figure 31 illustrates the operation of CBC-MAC in both 

cases.  If the size of the input message block is equal to a positive multiple of 

the block size (namely, 128 bits), the last block shall be exclusive-OR'ed with 

K1 before processing.  Otherwise, the last block shall be padded with 10^i  

and exclusive-OR'ed with K2.   

The result of the previous process will be the input of the last encryption.  The 

output of AES-CMAC provides data integrity of the whole input message. 
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Figure 30 - Two cases of AES-CMAC 

 

 

 

- CIPHK is AES-128 with key K. 

- The message M is divided into blocks M1,…Mn , where Mi is the i-th 

message block. 

- The length of Mi is 128 bits for i = 1,...,n-1, and the length of the last 

block, Mn, is less than or equal to 128 bits. 

- K1 is the subkey for the case (a), and K2 is the subkey for the case (b). 

- K1 and K2 are generated by the subkey generation algorithm described 

in section 3.4.1.1. 

 

 

 

 

 

 

(a) positive multiple block length    (b) otherwise 
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3.5.1.1. Subkey generation algorithm 
 

The subkey generation algorithm, Generate_Subkey(), takes a secret key, K, 

which is just the key for AES-128. The outputs of the subkey generation 

algorithm are two subkeys, K1 and K2.  

 

(K1,K2) := Generate_Subkey(K). 

 

Subkeys K1 and K2 are used in both MAC generation and MAC verification 

algorithms.  K1 is used for the case where the length of the last block is equal 

to the block length.  K2 is used for the case where the length of the last block 

is less than the block length. 

 

Figure 31 - CMAC generate_subkey() pseudo code 

 

      Input     : K (128-bit key)                                       

      Output   : K1 (128-bit first subkey)                             

                      K2 (128-bit second subkey)                            

                                                                       

      Constants: const_Zero is 0x00000000000000000000000000000000      

                        const_Rb   is 0x00000000000000000000000000000087      

      Variables: L                       for output of AES-128 applied to 0^128     

                                                                       

      Step 1.  L := AES-128(K, const_Zero);                            

      Step 2.  if MSB(L) is equal to 0                                 

                   then    K1 := L << 1;                                   

                   else    K1 := (L << 1) XOR const_Rb;                    

      Step 3.  if MSB(K1) is equal to 0                                

                   then    K2 := K1 << 1;                                  

                   else    K2 := (K1 << 1) XOR const_Rb;                   

      Step 4.  return K1, K2;                                          
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- In step 1, AES-128 with key K is applied to an all-zero input block. 

- In step 2, K1 is derived through the following operation: 

If the most significant bit of L is equal to 0, K1 is the left-shift of L 

by 1 bit. 

Otherwise, K1 is the exclusive-OR of const_Rb and the left-shift of 

L by 1 bit. 

- In step 3, K2 is derived through the following operation: 

If the most significant bit of K1 is equal to 0, K2 is the left-shift of 

K1 by 1 bit. 

Otherwise, K2 is the exclusive-OR of const_Rb and the left-shift of 

K1 by 1 bit. 

- In step 4, (K1,K2) := Generate_Subkey(K) is returned. 

 

3.5.1.2. MAC generation algorithm 
 

The MAC generation algorithm, AES-CMAC(), takes three inputs, a secret 

key, a message, and the length of the message in octets.  The secret key, 

denoted by K, is just the key for AES-128.  The message and its length in 

octets are denoted by M and len, respectively.  The message M is denoted by 

the sequence of M_i, where M_i is the i-th message block.  That is, if M 

consists of n blocks, then M is written as: 

 

- M = M1 || M2 || ... || Mn-1 || Mn 

 

The length of Mi is 128 bits for i = 1,...,n-1, and the length of the last block Mn 

is less than or equal to 128 bits. 
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The output of the MAC generation algorithm is a 128-bit string called a MAC, 

which is used to validate the input message.  The MAC is denoted by: 

 

T := AES-CMAC(K,M,len) 

 

Validating the MAC provides assurance of the integrity and authenticity of the 

message from the source. 

It is possible to truncate the MAC.  According to CMAC, at least a 64-bit MAC 

should be used as protection against guessing attacks.  The result of 

truncation should be taken in most significant bits first order. 

The block length of AES-128 is 128 bits (16 octets).  There is a special 

treatment if the length of the message is not a positive multiple of the block 

length.  The special treatment is to pad M with the bit-string 10^i to adjust the 

length of the last block up to the block length. 

For an input string x of r-octets, where 0 <= r < 16, the padding function, 

padding(x), is defined as follows: 

 

padding(x) = x || 10^i      where i is 128-8*r-1 

 

That is, padding(x) is the concatenation of x and a single '1', followed by the 

minimum number of '0's, so that the total length is equal to 128 bits. 
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Figure 32 describes the MAC generation algorithm. 

 
Figure 32 - AES-CMAC pseudo code 

 

 

Input    : K    ( 128-bit key )                                  
               : M    ( message to be authenticated )                  
               : len  ( length of the message in octets )              
      Output   : T    ( message authentication code )                                                                                     
         Constants: const_Zero is 0x00000000000000000000000000000000      
                 const_Bsize is 16                                                                                                     
      Variables: K1, K2 for 128-bit subkeys                            
                 M_i is the i-th block (i=1..ceil(len/const_Bsize))    
                 M_last is the last block xor-ed with K1 or K2         
                 n      for number of blocks to be processed           
                 r      for number of octets of last block             
                 flag   for denoting if last block is complete or not  
                                                                       
      Step 1.  (K1,K2) := Generate_Subkey(K);                          
      Step 2.  n := ceil(len/const_Bsize);                             
      Step 3.  if n = 0                                                
               then                                                    
                    n := 1;                                            
                    flag := false;                                     
               else                                                    
                    if len mod const_Bsize is 0                        
                    then flag := true;                                 
                    else flag := false;                                                                          
      Step 4.  if flag is true                                         
               then M_last := M_n XOR K1;                              
               else M_last := padding(M_n) XOR K2;                     
      Step 5.  X := const_Zero;                                        
      Step 6.  for i := 1 to n-1 do                                    
                   begin                                               
                     Y := X XOR M_i;                                   
                     X := AES-128(K,Y);                                
                   end                                                 
               Y := M_last XOR X;                                      
               T := AES-128(K,Y);                                      
      Step 7.  return T;                  
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- In step 1, subkeys K1 and K2 are derived from K through the subkey 

generation algorithm. 

 

- In step 2, the number of blocks, n, is calculated.  The number of blocks 

is the smallest integer value greater than or equal to the quotient 

determined by dividing the length parameter by the block length, 16 

octets. 

 

- In step 3, the length of the input message is checked.  If the input 

length is 0 (null), the number of blocks to be processed shall be 1, and 

the flag shall be marked as not-complete-block (false). 

Otherwise, if the last block length is 128 bits, the flag is marked as 

complete-block (true); else mark the flag as not-complete-block (false). 

 

- In step 4, M_last is calculated by exclusive-OR'ing M_n and one of the 

previously calculated subkeys.  If the last block is a complete block 

(true), then M_last is the exclusive-OR of M_n and K1. 

Otherwise, M_last is the exclusive-OR of padding(M_n) and K2. 

 

- In step 5, the variable X is initialized. 

 

- In step 6, the basic CBC-MAC is applied to M_1,...,M_{n-1},M_last. 

 

- In step 7, the 128-bit MAC, T := AES-CMAC(K,M,len), is returned. 

 

- If necessary, the MAC is truncated before it is returned. 
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3.5.1.3. Security considerations 
 

The security provided by AES-CMAC is built on the strong cryptographic 

algorithm AES.  However, as is true with any cryptographic algorithm, part of 

its strength lies in the secret key, K, and the correctness of the 

implementation in all of the participating systems.  If the secret key is 

compromised or inappropriately shared, it guarantees neither authentication 

nor integrity of message at all.  

 

If and only if AES-CMAC is used properly it provides the authentication and 

integrity that meet the best current practice of message authentication. 

 

3.6. AES Key Wrap algorithm 
 

United States of America has chosen AES Key Wrap algorithm for AES keys 

encryption. This algorithm is described in this section because it will be 

useful, together with AES-CMAC, during the developing of MACsec Key 

Agreement protocol in Sec. 4.5.2. 

 

The AES key wrap algorithm is designed to wrap or encrypt key data [vii ]. 

The key wrap operates on blocks of 64 bits.  Before being wrapped, the key 

data is parsed into n blocks of 64 bits. 

The only restriction the key wrap algorithm places on n is that n be at least 

two. 

The inputs to the key wrapping process are the KEK and the plaintext to be 

wrapped.  The plaintext consists of n 64-bit blocks, containing the key data 

being wrapped.  The key wrapping process is described below (Figure 33). 
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Figure 33 - AES Key Wrap pseudo code 

 

The initial value (IV) refers to the value assigned to A[0] in the first step of the 

wrapping process.  This value is used to obtain an integrity check on the key 

data.  In the final step of the unwrapping process, the recovered value of A[0] 

is compared to the expected value of A[0].  If there is a match, the key is 

accepted as valid, and the unwrapping algorithm returns it.  If there is not a 

match, then the key is rejected, and the unwrapping algorithm returns an 

error. 

 

The default initial value (IV) is defined to be the hexadecimal constant: 

 

       A[0] = IV = A6A6A6A6A6A6A6A6 

 

1) Initialize variables. 

       Set A0 to an initial value (see 2.2.3) 

       For i = 1 to n 

            R[0][i] = P[i] 

 

   2) Calculate intermediate values. 

       For t = 1 to s, where s = 6n 

           A[t] = MSB(64, AES(K, A[t-1] | R[t-1][1])) ^ t 

           For i = 1 to n-1 

               R[t][i] = R[t-1][i+1] 

           R[t][n] = LSB(64, AES(K, A[t-1] | R[t-1][1])) 

 

   3) Output the results. 

Set C[0] = A[t] 

         For i = 1 to n 

             C[i] = R[t][i] 
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The use of a constant as the IV supports a strong integrity check on the key 

data during the period that it is wrapped.  If unwrapping produces A[0] = 

A6A6A6A6A6A6A6A6, then the chance that the key data is corrupt is 2-64.  If 

unwrapping produces A[0] any other value, then the unwrap must return an 

error and not return any key data. 
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4. MAC Security (MACsec) 

4.1. Introduction 
 

After the discussion of symmetric cryptographic algorithms (Sec. 3), with 

special emphasis on AES and its modes of operations AES-CMAC and AES 

Key Wrap, in this section a new protocol is introduced, MACsec, which takes 

advantage of the previously treated algorithms. 

 

MACsec (Media Access Control security) [viii ] has been chosen as security 

standard by Renesas, in the developing of a project whose aim is to establish 

secure communications between devices inside automotive environment on 

Ethernet links. 

 

The main problem to deal with is the access by unauthorized people or 

devices to controlled or confidential information.  

The best and most secure solution to vulnerability at the access edge is to 

use the intelligence of the network. The standard IEEE 802.1X provides port-

based access control using authentication, but authentication alone does not 

guarantee the confidentiality and integrity of data on the LAN. While physical 

security and end-user awareness can mitigate threats to data on an IEEE 

802.1X–authenticated LAN, in the case of automotive field there may be 

situations in which the LAN needs additional protection. When additional 

protection is needed we can enable data confidentiality and integrity on the 

LAN by using MAC Security (MACsec). Defined by the IEEE 802.1AE 

standard, MACsec secures communication for authorized endpoints on 

Ethernet links. 
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Figure 34 - 802.1X and MACsec 

 

4.2. About MACsec 

4.2.1. MACsec Benefits 
 

The reasons why Renesas, and maybe other companies, are going in the 

direction of MACsec implementations are to be found in the following benefits 

of the protocol on wired networks:  

• Confidentiality: MACsec helps ensure data confidentiality by providing 

strong encryption at Layer 2.   

• Integrity: MACsec provides integrity checking to help ensure that data 

cannot be modified in transit.   

• Flexibility: You can selectively enable MACsec using a centralized 

policy, thereby helping ensure that MACsec is enforced where required 
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while allowing non-MACsec-capable components to access the 

network.   

• Network intelligence: Unlike end-to-end, Layer 3 encryption techniques 

that hide the contents of packets from the network devices they cross, 

MACsec encrypts packets on a hop-by-hop basis at Layer 2, allowing 

the network to inspect, monitor, mark, and forward traffic according to 

your existing policies.   

 

 
Figure 35 - MACsec hop-by-hop basis 

 

 

4.2.2. MACsec limitations 
 

Although MACsec offers outstanding data security, it has some limitations: 

• Endpoint support: Not all endpoints support MACsec.   

• Hardware support: Line-rate encryption typically requires updated 

hardware on the access switch.   

• Technology integration: Enabling MACsec may affect the functions of 

other technologies that also connect at the access edge, such as IP 

telephony. Understanding and accommodating these technologies is 

essential to a successful deployment.   
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4.3. 802.1X without MACsec 
 

MACsec was primarily designed to be used in conjunction with IEEE 802.1X-

2010. IEEE 802.1X provides port-based access control using authentication. 

An IEEE 802.1X–enabled port can be dynamically enabled or disabled based 

on the identity of the user or device that connects to it. Figure 36 illustrates 

the default behavior of an IEEE 802.1X–enabled port prior to authentication: 

we can see that if the endpoint’s identity is unknown all traffic is blocked.  

 

 

 
Figure 36 - 802.1X behavior prior to authentication without MACsec 

 

After authentication instead (Figure 37), the endpoint’s identity is known and 

all traffic from that endpoint is allowed. The switch performs source MAC 

address filtering and port state monitoring to help ensure that only the 

authenticated endpoint is allowed to send traffic.  
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Figure 37 - 802.1X behavior after authentication without MACsec 

 

Before the 2010 revision of IEEE 802.1X, there was no mechanism to help 

ensure the confidentiality or integrity of the traffic sent after authentication. 

Because traffic was sent in the clear with no integrity checks, rogue users 

with physical access to the authenticated port could monitor, modify, and 

send traffic.  

 

4.4. 802.1X-2010 
 

IEEE 802.1X-2010 defines the way that MACsec can be used in conjunction 

with authentication to provide secure port-based access control [ix] [x]. 

IEEE 802.1X authenticates the endpoint and transmits the necessary 

cryptographic keying material to both sides. 

Using the master keys derived from the IEEE 802.1X authentication, MACsec 

can establish an encrypted link on the LAN, thereby helping ensure the 

security of the authenticated session. 
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Figure 38 - MACsec enabled port 

 

 

As we can see from Figure 38, rouge users, even with physical access, can’t 

monitor or spoof encrypted traffic on the wire.   

When MACsec is applied on both the uplink and the downlink, the MACsec 

sessions are completely independent. Moreover, while all traffic is encrypted 

on the wire, the traffic is in the clear inside each switch. This feature allows 

the switch to apply all the network policies (quality of service [QoS], deep 

packet inspection, NetFlow, etc.) to each packet without compromising the 

security of the packet on the wire. With hop-by-hop encryption, MACsec 

secures communication while maintaining network intelligence. 
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4.4.1. Secure communication 
 

Each port that is capable of participating in an instance of the secure MAC 

Service comprises: 

•  MAC Security Key Agreement (MKA) Entity (KaY) 

•  MAC Security Entity (SecY) 

 

A secure Connectivity Association (CA) is created to meet the requirements 

of the MAC Service and MACsec for connectivity between the stations 

attached to an individual LAN. 

Each CA is supported by unidirectional Secure Channels (SCs), each SC 

supporting secure transmission of frames through the use of symmetric key 

cryptography, from one of the systems to all the others in the CA. 

Each SC is supported by an overlapped sequence of Security Associations 

(SAs). 

Each SA uses a fresh Secure Association Key (SAK) derived by the MKA to 

provide the MACsec service guarantees and security services for a sequence 

of transmitted frames. 

 

In the following Figure we can see a typical scenario where the CA is created 

by the MACsec Key Agreement following mutual authentication and 

authorization of A, B and C, and the two SCs that support the CA. 
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Figure 39 - Secure communication scenario 

 

 

4.4.2. Components and Protocols 
 

MACsec uses three components (as shown in Figure 40):  

 

1. Supplicant: The supplicant is a client that runs on the endpoint and 

submits credentials for authentication. To support MACsec, the supplicant 

must also be able to manage MACsec key negotiation and encrypt 

packets.   

 

2. Authenticator: The authenticator (switch) is the network access device that 

facilitates the authentication process by relaying the supplicant’s 

credentials to the authentication server. The authenticator enforces the 

network access policy, including MACsec. Like the supplicant, the 

authenticator must be capable of MACsec key negotiation and packet 

encryption. The authenticator typically needs special hardware to support 

MACsec at line rate.   

CAA

BC 
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3. Authentication server: The authentication server validates the supplicant’s 

credentials and determines what network access the supplicant should 

receive. In MACsec, the authentication server plays an important role in 

the distribution of master keying material to the supplicant and 

authenticator. In addition, the authentication server can define the MACsec 

policy to be applied to a particular endpoint.   

 

 
Figure 40 - MACsec components and protocols 

 

MACsec uses several protocols: 

 

• Extensible Authentication Protocol (EAP): The message format and 

framework defined by RFC 4187 that provides a way for the supplicant 

and the authenticator to negotiate the EAP authentication method and 

MACsec association. 
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• EAP method: Protocol that defines the authentication method—that is, 

the credential type and how it will be submitted from the supplicant to 

the authentication server using the EAP framework; for MACsec, the 

EAP 

method must be capable of generating keying material to export a 

master session key (MSK) to the supplicant and authentication server. 

 

• MACsec Key Agreement (MKA): Protocol that discovers MACsec peers 

and negotiates the keys used by MACsec; MKA is defined in IEEE 

802.1X-2010. 

 

• Security Association Protocol (SAP): A pre-standard key agreement 

protocol similar to MKA. 

 

• EAP over LAN (EAPoL): An encapsulation defined by IEEE 802.1X for 

the transport of EAP from the supplicant to the switch over IEEE 802 

wired networks; EAPoL is a Layer 2 protocol (Sec. 4.5.2.2). 

 

• RADIUS: Essentially the standard for communication between the 

switch and the authentication server - the switch extracts the EAP 

payload from the Layer 2 EAPoL frame and encapsulates the payload 

inside a Layer 4 RADIUS packet; RADIUS is also used to deliver keying 

material to the authenticator. 

 

4.5. MACsec Sequence 
 

With the following schema (Figure 41) we can see how the components and 

protocols of MACsec work together. Messages exchange is divided into three 

stages: master key distribution, session key agreement, and session secure. 
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A fourth stage, session termination, is not shown. Each stage is described in 

the sections that follow.   

 

 

 
Figure 41 - High Level 802.1X and MACsec sequence 

 

 

4.5.1. Authentication and Master Key distribution 
 

Through these messages (IEEE 802.1X) master key material will be provided 

to the supplicant and switch that will subsequently be used by MACsec.  

By using an EAP method that supports the generation of encryption keys, the 

supplicant and the authentication server independently derive the same MSK 

(Master Session Key). The MSK passes through a key derivation function to 
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generate a Connectivity Association Key (CAK) on the supplicant and the 

authentication server. The CAK is a long-lived master key that is used to 

generate all other keys needed for MACsec in the MKA.  

The switch has no visibility into the details of the EAP session between the 

supplicant and the authentication server, so it cannot derive the MSK or the 

CAK directly. Instead, the switch receives the CAK from the authentication 

server in the Access-Accept message at the end of the IEEE 802.1X 

authentication. The CAK is delivered in the RADIUS vendor-specific attributes 

(VSAs) MS-MPPE-Send-Key and MS-MPPE-Recv-Key. Along with the CAK, 

the authentication server sends an EAP key identifier that is derived from the 

EAP exchange and is delivered to the authenticator in the EAP Key-Name 

attribute of the Access-Accept message.  

 

4.5.2. Session key agreement (MKA) 
 

In this stage of the protocol both the Supplicant and the Authenticator have 

the same CAK key: the Supplicant derived it from the MSK using a Key 

Derivation Function (Sec. 4.5.2.1), while the Authenticator received it from the 

Authentication Server in the first stage. 

This stage takes the name of MACsec Key Agreement (MKA) protocol. The 

Authenticator’s goal is to deliver the SAK (Secure Association Key) to the 

Supplicant as an encryption key for the future MACsec messages. To do this, 

the Authenticator derives other two keys (ICK and KEK) starting from the 

CAK, which is not used directly. ICK (ICV Key) is used for integrity of the 

SAK, while the KEK (Key Encryption Key) is used in the AES Key Wrap 

algorithm to wrap the SAK to be distributed. 
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Figure 42 - MKA key hierarchy 

 

 

In the above Figure the MKA key hierarchy is shown.  

The root of key hierarchy for any given instance of MKA is the secure 

Connectivity Association Key (CAK), a secret key. Possession of a CAK for 

the CA is a prerequisite for membership in each CA supported by MACsec, 

and all potential members possess the same CAK and are attached to the 

same LAN.  

The main function, which is used in the creation of the two keys ICK and 

KEK, is the KDF (Key Derivation Function), defined in the standard (Sec. 

4.5.2.1). KDF uses a PRF (Pseudo Random Function), which in this case is 

AES-CMAC. 

 

 

 

 

4.5.2.1. KDF (Key Derivation Function) 
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The key derivation function (KDF) defined in the 802.1X-2010 standard is the 

main function used to derive the keys in the MKA key hierarchy (see Figure 

42). 

The KDF uses a pseudorandom function (PRF), which shall be AES-CMAC-

128 when the derivation key is 128 bits. 

 

The KDF is described as follows:  

Figure 43 - KDF pseudo code 

 

Output← KDF (Key, Label, Context, Length)  

where  

Input:  

Key, a key derivation key of 128 or 256 bits  

Label, a string identifying the purpose of the keys derived using this KDF Context, a bit 

string that provides context to identify the derived key  

Length, the length of the output in bits encoded in two octets with the most significant octet 

first 

 

Output: a Length-bit derived value  

Fixed values: 

���h, the length of the output of the PRF in bits 

���r, denoting the length of the binary representation of the counter i  

iterations ← (Length + (h-1))/h��� 

 

if iterations > 2r-1, then indicate an error and stop.  

result ← ""���  

do          i = 1 to iterations  

result ← result | PRF(Key, i | Label | 0x00 | Context | Length)  

od 

return first Length bits of result, and securely delete all unused bits  
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4.5.2.2. MKA transport 
 

MKA provides a secure multipoint-to-multipoint transport between the 

members of the same CA, suitable for conveying information that is constant, 

or refreshed or acknowledged by the MKA applications that make use of that 

transport. The CAK is used to authenticate each protocol data unit (MKPDU) 

transmitted, providing proof of its transmission by a CA member, and each 

station includes its own randomly chosen identifier and a message number in 

the MKPDU. By transmitting MKPDUs that contain the identifiers and recent 

message numbers of the other participants, each member proves that it is in 

current possession of the CAK and is actively participating in the protocol, 

thus demonstrating the ‘liveness’ of the MKPDU and distinguishing it from 

MKPDUs that could have been captured by an attacker and played or 

replayed later—with the aim of disrupting the protocol or of influencing its 

outcome. MKPDUs are transmitted at regular intervals of MKA Hello Time or 

MKA Bounded Hello Time.  

The message numbers also serve to enforce in-order delivery, and each of 

the MKA applications is designed so that the information conveyed in each 

MKPDU is idempotent, i.e., can be repeated without further changing the 

state of a recipient, and complete, i.e., fully expresses the desire of the 

transmitter for state change at the recipient. This design philosophy simplifies 

protocol analysis and allows a receiver to discard MKPDUs with prior 

message numbers.  

The MKA transport is fully distributed and, as a consequence, robust in the 

face of the failure of any participant or of the LAN connectivity to that 

participant.  
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4.5.2.3. EAPoL 
 

MKA Protocol Data Units (MKPDUs) are transmitted as body of EAPoL MKA 

messages. 

EAP (Extensible Authentication Protocol) is an authentication framework 

which supports multiple authentication methods. 

The encapsulation of EAP over IEEE 802 is defined in IEEE 802.1X and 

known as "EAP over LANs" or EAPOL.  

The same three main components are defined in EAP and EAPoL to 

accomplish the authentication conversation: 

1. Supplicant (Port Authentication Entity (PAE) seeking access to network 

resources) 

2. Authenticator (PAE that controls network access) 

3. Authentication Server (a RDIUS/AAA server) 

 

The following figure shows how these LAN components are connected in a 

wired environment (as discussed for MACsec in Sec. 4.5). 

 

 

 

 

 
Figure 44 - EAPoL architecture 
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The EAPoL frame has the following format: 

 

 

 
Figure 45 - EAPoL frame format 

 

The fields in the frame are: 

 

MAC Header 
The first 6 bytes of the MAC header are the Destination Address and the last 

6 bytes are the Source Address. 

 

Ethernet Type 
The Ethernet Type contains a 88-8e, this is the two byte type code assigned 

to EAPoL. 

 

Version 
In 2004 Version 2 was standardized, nothing has been standardized since. 

 

Packet Type 
The Packet Type field is a byte long and represents the type of package the 

frame is. 
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Packet Type Name Description 

00000000 EAP-Packet Contains an encapsulated EAP frame (this 

is what majority of EAPoL frames are) 

00000001 EAPOL-Sart A supplicant can issue an EAPOL-Start 

fram instead of waiting for a challenge 

from the 

authenticator 

00000010 EAPOL-Logoff Used to return the state of the port to 

unauthorized when the supplicant is 

finished using the 

network 

00000011 EAPOL-Key Used to exchange Cryptographic Keying 

information 

00000100 EAPOL-

Encapsulated-

ASF-Alert 

Provided as a method of allowing Alerting 

Standards Forum (ASF) alerts (ex. specific 

SNMP traps) to be forwarded through a 

port that is in the Unauthorized state 

00000101 EAPOL-MKA Used to exchange  

 
 

During the MKA protocol the EAPoL method used is the EAPOL-MKA (type 

5). 

 

Packet Body Length 
The Packet Body Length field is a 2 byte value representing packet body 

length (It is set to 0 when there is no packet body) 
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Packet Body 
The Length field is two bytes long and contains the number of bytes in the 

entire packet. EAP assumes anything in excess of the Length is padding that 

can be ignored. 

 
Frame Check Sequence 
The Frame Check Sequence (FCS) is checksum value added to the frame for 

error detection and correction.  

 

 

Each MKPDU (Figure 46) comprises a number of parameter sets. The first of 

these, the Basic Parameter Set, is always present, and is followed by zero or 

more further parameter sets, followed by the ICV. The ICV comprises the last 

16 octets of the MKPDU, as indicated by the EAPOL Packet Body Length.  

 

 

 
Figure 46 - EAPOL - MKA packet body with MKPDU format 

 

 

 

4.5.2.4. SAK generation 
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The Key Server is responsible for generating and distributing MACsec SAKs, 

using AES Key Wrap, to each of the other members of the CA, using the 

MKA transport.  

Each SAK is identified by a 128-bit Key Identifier (KI), comprising the Key 

Server’s MI (providing the more significant bits) and a 32-bit Key Number 

(KN) assigned by that Key Server (sequentially, beginning with 1). Each KI is 

used to identify the corresponding SAK for the purposes of SA assignment, 

and appears in the clear in MKPDUs, so network management equipment 

and personnel can observe and diagnose MKA operation (if necessary) 

without having access to any secret key.  

Each SAK should be generated using the KDF specified in Sec. 4.5.2.1. 

using the following transform:  

 

SAK = KDF(Key, Label, KS-nonce | MI-value list | KN, SAKlength)  

 

Where: 
  

- Key = CAK Label = “IEEE8021 SAK”  

- KS-nonce = a nonce of the same size as the required SAK, obtained 

from an RNG each time an SAK is generated.  

- MI-value list =a concatenation of MI values (Member Identifier, 

randomly chosen by each participant at the beginning of the protocol) 

from all live participants.  

- KN = four octets, the Key Number assigned by the Key Server as part 

of the KI  

- SAKlength = two octets representing an integer value (128 for a 128 bit 

SAK, 256 for a 256 bit SAK) with the most significant octet first.  
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4.5.2.5. CAK derivation 
 

A pairwise CAK is derived directly from the EAP MSK using the following 

transform:  

 

CAK = KDF(Key, Label, mac1 | mac2, CAKlength)  

 

Where: 

- Key = MSK[0-15] for a 128 bit CAK, MSK[0-31] for a 256 bit CAK. 

- Label = "IEEE8021 EAP CAK"  

- mac1 = the lesser of the two source MAC addresses used in the 

EAPOL-EAP exchange. 

- mac2 = the greater of the two source MAC addresses used in the 

EAPOL-EAP exchange. 

- CAKlength = two octets representing an integer value (128 for a 128 bit 

CAK, 256 for a 256 bit CAK) with the most significant octet first. 

 
 

A 16 octet CKN is derived from the EAP session ID using the following 

transform:  

 

CKN = KDF(Key, Label, ID | mac1| mac2, CKNlength)  
 

Where: 

 

- Key = MSK[0-15] for a CKN naming a 128 bit CAK, MSK[0-31] for 

naming a 256 bit CAK.  

- ID = EAP-Session-ID Label = "IEEE8021 EAP CKN"  
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- mac1  = the lesser of the two source MAC addresses used in the 

EAPOL-EAP exchange. 

- mac2  = the greater of the two source MAC addresses used in the 

EAPOL-EAP exchange. 

- CKNlength = two octets representing an integer value (128) with the 

most significant octet first. 
 

 

4.5.2.6. ICK derivation 
 

ICK (Integrity Check value Key) is a 128bit key derived using the KDF with 

the following parameters: 

- Key : CAK (16 octets) 

- Label : “IEEE8021 ICK” (12 octets) 

- Context: first 16 octets of the CKN for the CAK 

- Length: ICK length (“0080”, 2 octets) 

 

This is a test vector for the ICK derivation. 

- Key : 135bd758 b0ee5c11 c55ff6ab 19fdb199 

- Label : 49454545 38303231 2049434b  

- Context: 96437a93 ccf10d9d fe347846 cce52c7d 

- Length: 0080 

- Output: 8f1c5cb1 c8ed2e5f 047906e0 473aad4d  

 

The ICK key is used to produce an ICV for integrity protection as described in 
Sec. 4.5.2.8. 
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4.5.2.7. KEK derivation 
 

KEK (Key Encryption Key) is a 128bit key (Figure 42) that will be used as key 

in the AES Key Wrap algorithm (Sec. 3.6) to protect the session key SAK for 

MACsec communication. 

 

The KEK is derived from the CAK using the following transform:  

 

KEK = KDF(Key, Label, Keyid, KEKLength)  

 

Where: 

- Key = CAK Label = “IEEE8021 KEK”  

- Keyid = the first 16 octets of the CKN, with null octets appended to pad 

to 16 octets if necessary  

- KEKLength = two octets representing an integer value (128 for a 128 bit 

KEK, 256 for a 256 bit KEK) with the most significant octet first  

 

 

4.5.2.8. Message authentication 
 

Each protocol data unit (MKPDU) transmitted is integrity protected by an 128 

bit ICV, generated by AES- CMAC using the ICK: 
  
ICV = AES-CMAC (ICK, M, 128)  

M = DA + SA + (MSDU – ICV)  
 

In other words, M comprises the concatenation of the destination and source 

MAC addresses, each represented by a sequence of 6 octets in canonical 

format order, with the MSDU (MAC Service Data Unit) of the MKPDU 
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including the allocated Ethertype, and up to but not including, the generated 

ICV.  
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5. MKA Key Hierarchy SW Implementation 
 

After the conceptual and algorithmic description of AES and MACsec, with 

particular attention to the MKA Key Hierarchy protocol, it’s possible, after the 

commitment of Renesas, to show a software implementation of the key 

hierarchy described in Sec. 4.5.2. 

The implemented software will be used to test the hardware solution (Sec. 6), 

to show its output correctness. 

 

5.1. Java implementation 
 

One of the main reasons Java has been chosen at first is its platform 

independence, which means that Java programs can be run on many 

different types of computers. A Java program runs on any computer with a 

Java Runtime Environment, also known as a JRE, installed. A JRE is 

available for almost every type of computer — PCs running Windows, 

Macintosh computers, Unix or Linux computers, huge mainframe computers, 

and even cell phones. 

 

Regarding automotive environment Java is not the best solution, but as will 

be shown later (Sec. 5.2) a C implementation will be preferred.  

However Java software is very useful for future hardware results test and it’s 

faster and easier to implement respect to C. 
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5.1.1. AES – CMAC 
 

The AES-CMAC Java module has been developed to obtain a CMAC value 

starting from an input message and key of variable length. The realization 

followed the specifications of the [rfc4493] standard. 

INPUTS: 

- Message to be encrypted 

- Key for encryption 

 

OUTPUT: 

- CMAC 128bit value 

 

 

 
Figure 47 - CMAC Java sample output 

 

 

5.1.1.1. Cipher.class 
 

As described in Sec. 3.5 the AES-CMAC relies on AES encryption algorithm. 

The final software takes advantage of the Java Cipher.class class: this class 

provides the functionality of a cryptographic cipher for encryption and 

decryption. It forms the core of the Java Cryptographic Extension (JCE) 

framework [xi]. 
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In order to create a Cipher object, the application calls the Cipher's 

getInstance method, and passes the name of the requested transformation to 

it. Optionally, the name of a provider may be specified.  

A transformation is a string that describes the operation (or set of operations) 

to be performed on the given input, to produce some output.  

A transformation always includes the name of a cryptographic algorithm (e.g., 

AES), and may be followed by a feedback mode and padding scheme.  

A transformation is of the form: 

 

- "algorithm/mode/padding" or  

- "algorithm"  

 

(in the latter case, provider-specific default values for the mode and padding 

scheme are used).  

 

The transformation used in this case has been of the type: 

 

Cipher aesCipher = Cipher.getInstance("AES/CBC/NOPADDING"); 

 

As we can see the algorithm is of course AES, while the mode is CBC with no 

padding; there is no CMAC mode in the modes list of the transformations 

which can be requested by the getInstance method. 

After having the cipher instance, the init method is called to initialize the 

cipher with a key and a set of algorithm parameters.  

 
public final void init(int opmode, Key key, AlgorithmParameterSpec params) 

                throws InvalidKeyException, InvalidAlgorithmParameterException 

 

opmode - the operation mode of this cipher (this is one of the following: 

ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE or UNWRAP_MODE) 
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key - the encryption key 

params - the algorithm parameters 

 

The cipher is initialized for one of the following four operations: encryption, 

decryption, key wrapping or key unwrapping, depending on the value of 

opmode. 

 

In the CMAC case, the init method is called as follows: 

 

aesCipher.init(Cipher.ENCRYPT_MODE, key, ZERO_IV); 

where: 

 

- opmode is ENCRYPT_MODE since we have to encrypt the message 

created with the CMAC algorithm 

- key is a 128bit key 

- ZERO_IV is a 128bit initialization vector (as requested in the CMAC 

algorithm) of 16 octets equals to 0x00; it belongs to the 

IvParameterSpec class which specifies an initialization vector (IV). 

 

To start the encryption the method update has to be called: 

 
public final int update(byte[] input, int inputOffset, int inputLen, byte[] output,  

int outputOffset) 

                 throws ShortBufferException 

 

The update method used in the case of CMAC continues a multiple-part 

encryption processing another data part.  

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, 

are processed, and the result is stored in the output buffer, starting at 

outputOffset inclusive.  
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Parameters: 

- input - the input buffer 

- inputOffset - the offset in input where the input starts 

- inputLen - the input length 

- output - the buffer for the result 

- outputOffset - the offset in output where the result is stored 

 

At the end of a multi-part encryption done with update method, the doFinal 

method has to be called: 

 
public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output, 

          int outputOffset) 

                  throws ShortBufferException, IllegalBlockSizeException, 

BadPaddingException 

 

The method encrypts data in a single-part operation, or, in this case, finishes 

a multiple-part operation.  

The first inputLen bytes in the input buffer, starting at inputOffset inclusive, 

and any input bytes that have been buffered during a previous update 

operation, are processed, with padding (if requested) being applied. 

 

Parameters:  
 

- input - the input buffer 

- inputOffset - the offset in input where the input starts 

- inputLen - the input length 

- output - the buffer for the result 

- outputOffset - the offset in output where the result is stored 
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5.1.1.2. Results  
 

In order to test the software solution of the AES-CMAC the results are being 

compared to the test vectors of AES-CMAC 128 given by NIST [xii]. 

 

5.1.1.3. Applet Java and Web Server 
 

After the AES_CMAC Java implementation, a Web Applet has been created 

to give the possibility to use the CMAC calculator on a webpage available on 

the net.  

 

The homepage of the so called CMACalculator (Figure 48) consists in two 

simple fields asking for the key and the message for the encryption algorithm. 

 

 

 

 
Figure 48 - CMACalculator homepage 
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To make our Java aesCmac class run by a web browser, a Java applet has 

to be realized. 

 

A Java applet is a small application which is written in Java and delivered to 

users in the form of bytecode. The user launches the Java applet from a web 

page, and the applet is then executed within a Java Virtual Machine (JVM) in 

a process separate from the web browser itself. 

 

A Java applet extends the class java.applet.Applet. The class which must 

override methods from the applet class to set up a user interface inside itself 

(Applet) is a descendant of Panel which is a descendant of Container. As 

applet inherits from container, it has largely the same user interface 

possibilities as an ordinary Java application, including regions with user 

specific visualization. 

 

So to turn the aesCmac class in a Java applet it must extend Applet: 
 

public class AesCmac extends Applet { … } 

 

Now the html page has to include the <applet> tag in the <head> of the page: 

 
<APPLET id="cmac" CODE="AesCmac.class"> 

 

Of course to make the applet run in the web browser, Java must be activated. 
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5.1.2. Results and performance 
 

The main module in the MKA Key Hierarchy protocol from a software point of 

view is the AES-CMAC described in Sec. 5.1.1. 

 

Another implemented module is AES Key Wrap algorithm, which is compliant 

with the rfc3394. 

 

The whole MKA Key Hierarchy Java implementation flow is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 49 - Java SW flow 
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To test the performance of the Java implementation we have to face the time 

precision issues related to: 

 

- Clock resolution (less accuracy) 

- Java Virtual Machine (JVM) implementation in each operating system 

- Computer architecture 

 

Java.lang.System.currentTimeMillis() is used to get timing information; it runs 

faster then others (5/6 CPU clocks). 

 

 

Protocol Speed in ms 

AES-CMAC 727 

AES KEY WRAP 534 

ICV 230 

TOTAL 1491 
 

Figure 50 - MKA Key hierarchy Java performance 

 

These results are obtained with the following computer architecture: 

- CPU: Intel i7 2,3GHz 

- RAM: 8GB DDR3 

- OS: Win 7 64bit 

- JVM version 8, build 1.8.0_45-b14 

 

As visible from the above table, the most time expensive software module is 

the AES-CMAC, since it has to encrypt multiple times using the AES cipher.  
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5.2. C implementation 
 

The C implementation of the AES-CMAC algorithm came straightforward 

after the need to authenticate the devices to the main board, which are not 

MACsec already capable. The other modules of MKA Key Hierarchy are not 

implemented yet. 

 

To deal with AES encoding in C there is the need of the OpenSSL libray, 

which has to be included in the way: 

 
#include <openssl/aes.h> 

 

The version of OpenSSL used is the 1.0.2. 

 

With OpenSSL, including AES.h, we can encrypt using AES in this way: 

 

 

 

Figure 51 - Aes C usage 

 

 

 

 

Char *key;   //String containing the key 

unsigned char IN[16] = “…….”; 

unsigned char OUT[16] = “…….”; 

AES_KEY aes;      //structure to hold the key 

AES_set_encrypt_key (key, 128, &aes); 

AES_encrypt (IN , OUT , &aes);    // final encryption 
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The CMAC software structure is as follows: 

 

SOURCE FILE        HEADER FILE 

 

   cmac.cpp                        cmac.h 
   #include “cmac.h” 

   #include <openssl/aes.h> 

 

 

The test file main.cpp (#include “cmac.h”) produces the following screen 

outputs: 

 

 

 
Figure 52 - CMAC C test file output 

 

 

 

 

 

 

 

 

Implementation Interface 
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6. MKA Key Hierarchy HW Implementation 
 

After the conceptual and algorithmic description of the AES and the AES-

CMAC ciphers, of AES KEY WRAP and the software implementation of the 

MKA Key Hierarchy, it’s possible to illustrate the different hardware 

architectures to implement them. 

 

6.1. AES and Key Expansion modules 
 

Concerning the AES encryption algorithm, the attention must be focused to 

the SubBytes() transformation which is the most expensive step of the whole 

AES cipher in terms of resources and presents the longest critical path (see 

Sec. 3.1.1). The byte substitution is performed by the S-box which is byte 

oriented, so to substitute the whole State (128-bit), 16 instances of the S-box 

are needed: 16 S-boxes can be used in parallel in one time or less S-boxes in 

more than one time (e.g. 4 S-boxes in 4 times). The S-box hardware 

implementation is critical because of the computation of the multiplicative 

inverse of a byte on the Galois field GF(28): as the same Rijndael cipher’s 

authors and the NIST indicate, it the Extended Euclidean algorithm should be 

used. This procedure is very expensive in terms of hardware delay because it 

requires the integer division, which is a serial operation. As the literature 

suggests [xiii ], there are two usual implementations of the S-box: one based on 

the lookup tables, or memory supports like the dedicated RAM or ROM 

blocks on an FPGA, or one based on the Galois composite fields. The 

chosen solution is the fist one. 

 

The LUT (Look-Up Table)-based implementation of the S-box simply consists 

in storing and arranging appropriately the output values of the S-box in 

relation to all possible values of the input data, that is the byte to be 
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substituted. As already hinted in Sec. 3.1.1, the results is a 256 bytes table 

arranged as a 16 × 16 matrix in which the most significant nibble of the input 

byte selects the matrix row, while the least significant nibble of the input bytes 

selects the matrix column. This solution is widely diffused because its 

implementation requires a very few effort and it brings to a significant gain in 

terms of maximum achievable frequency. Anyway it can be almost expensive 

in terms of area consumption. The LUT-based S-box is usually employed 

when the AES cipher is implemented on an FPGA device, while it’s usually 

discharged for the ASIC realizations.  

 

Concerning the other AES round transformations, ShiftRows(), MixColumns() 

and AddRoundKey(), they do not leave space to any optimization or 

significant architectural variation. Focusing on the overall architecture of an 

AES cipher, there are many possibilities. The primary aspect concerns the 

number of rounds physically implemented. The structure created works with 

only one round used iteratively: in this case some multiplexer are needed to 

bypass the preliminary AddRoundKey() transformation and the MixColumns() 

one in the last round execution and the system is characterized by a low area 

consumption, even if with a higher latency.  
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Figure 53 - AES rolled architecture 

 

 

Lastly some few words can be spent about the key expander (see Sec. 3.2). 

The first point faced when projecting this module is the decision of when 

perform the key expansion: we chose to perform the expansion before the 

encryption, storing all the round keys in appropriate memory supports, 

instead of computing the round keys at runtime (or ”on the fly”).  

In Figure 54 we can see the AES core architecture with a buffer on the output 

to store the value. 
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Figure 54 - Implemented AES core 

 

 

Each time that a start signal occurs, the FSM enables the AES core, this one 

processes the data block with the help of the counter that drives the 

multiplexers and when the encrypted block is ready this is signaled through a 

last step signal, while the FSM return to the idle state. The Figure 55 shows 

the states map of the AES core.  
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Figure 55 - AES core finite state machine 

 

 

6.2. CMAC module 
 

The other implemented module is the cmac module. It instantiates the two 

previously described modules: aes_core and key_expander. 

 

 
(a) 

 
(b) 

Figure 56 - (a) CMAC block diagram, (b) CMAC instantiated modules in Verilog 
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Figure 57 - cmac finite state machine 

 

From the above cmac finite state machine figure, we can understand how the 

module is following the AES-CMAC algorithm steps described in rfc4493: the 

first step is the sub-key generation algorithm, which creates the two keys K1 

and K2 (cmac_sub_key state). 

After that, the cmac core algorithm is implemented; the output is given on a 

128bit bus together with the result_ready pin (see Figure 56a). 

 

 

 

 

6.3. AES Key Wrap module 
 



96 

Another module that instantiates the same aes_core and key_expander 

modules as the cmac module, is the key_wrap module which implements the 

AES Key Wrap algorithm described is Sec. 3.6. 

 

In the following figure we have the key_wrap diagram box. 

 

 

 

 
Figure 58 - key_wrap block diagram 

 

 

The output of the wrapping algorithm is given on three buses of 64 bits, as 

this is the way it is defined in the rfc3394. As it will be described in the 

following mka module (Sec. 6.5), these buses will be merged in a bigger 

register for the needed calculations. 

 

 

 

 

 

 

 

The next figure shows the finite state machine of the key_wrap module. 
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Figure 59 - key_wrap finite state machine 
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6.4. KDF module 
 

The kdf module implements the key derivation function described in the 

802.1X-2010 standard (see Sec. 4.5.2.1.). It implements the cmac module 

described in Sec. 6.2 as we can see from the block diagram in the following 

figure. 

 

 

 
Figure 60 - kdf block diagram 

 

The output is on a 128bit bus, and a kdf_ready pin is present. As described in 

the MKA Key Hierarchy algorithm, the kdf module will be started twice to 

have the keys ICK and KEK as output. 
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Here is the kdf finite state machine. 

 

 

 
 

Figure 61 - kdf finite state machine 

 

 

 

 

 

 

 

 

 

6.5. MKA module 
 



100 

The mka module is the top-level module of the MKA Key Hierarchy 

implementation. 

It implements all the previous mentioned modules, as showed in the following 

figure, taken from the Verilog code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 

 

 
(b) 

Figure 62 - mka implementing all the modules: (a) block diagram, (b) Verilog code 
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Figure 63 - mka finite state machine 

 

 

The above mka finite state machine reflects the algorithmic steps of the MKA 

Key hierarchy protocol.  
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The mka module receives the SAK serially on a 32bit bus: every received 

32bit chunks is stored in a 128bit register. This holds also for the CKN and 

CAK inputs. 

When all the three internal registers, linked to the three input keys, are full 

(that is each of the four chunks of every key has been stored), the 

input_ready pin is set and the internal state change to MKA_KEK. 

 

This state is responsible if the creation of the KEK: the kdf module is involved 

giving it the correct kek label as input. 

With the obtained KEK the Key Wrap can be applied to the SAK, which is 

stored in the internal SAK register.  

 

After, the ICK is derived and then the related ICV. All the results are stored in 

internal registers; at the end, when all the wanted values are ready, the 

output is ready and is sending in series on a 32bit bus. 

 

In the following table are showed the relative CPU clock cycles for each 

module during the mka module test bench. 

 

Module Clock cycles 

cmac 100 

key_wrap 246 

kdf 95 

mka 525 
 

Figure 64 - modules performance in clock cycles 

As visible from the above table the most expensive in time is the key_wrap 

module: to notice that the mka module instantiates all the other modules, in 

particular twice the kdf module.  
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Figure 65 - mka wave plot 

 

6.6. FPGA Synthesis 
 

The implemented system, described in Sec. 5, has been synthesized both on 

a FPGA Stratix V of Altera and on a 65 ηm standard-cell ASIC technology, to 

verify the respect of the design constraints (i.e. support of the maximum 

frequency of 125MHz) and document the statistics relevant to the area 

consumption. Even if the final target is the realization of an ASIC device, the 

synthesis on FPGA have been necessary to confirm that the implemented 

system was able to be used on the FPGA demo board.  

 

The TX MACsec and RX MACsec modules have been synthesized on the 

FPGA Stratix V 5SGXMABK3H40C4 of Altera, using the Altera software 

Quartus II (version 14.1). The selected device is an high performance and 

high size FPGA realized through the 28-nm TSMC process technology and 

has logic cores supplied with 0.9 V or 0.85 V. The programmable logic cores 

are called ALM (adaptive logic module) and they implement LUT-based logic 

functions. Each ALM contains a variety of LUT-based resources that can be 

divided between two combinational adaptive LUTs (ALUTs) and four 

registers, as it is depicted in Figure 66.  
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Figure 66 - ALM high-level block diagram for Stratix V devices 

 

 

Furthermore a Stratix V device is provided with embedded block dedicated to 

specific functionalities, as DSP blocks or M20K memory blocks.  
 

For the synthesis they have been specified the following constraints:  
 

- clock period = 8 ηs (corresponding to the frequency of 125 MHz);  
 

The synthesis results are reported in the following table. 
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Figure 67 - FPGA synthesis results 

 

6.7. Synthesis on standard-cell ASIC technology 
 

The mka module has been synthesized also on a 65 ηm standard-cell 

technology, using again a clock period of 8 ηs as constraint: the following 

table reports the statistics related to the area occupation (in kgates) and to 

the frequency that the module can support.  

 

 

Module Frequency Area occupancy (kgate) 

mka 125 MHz 102,38 
 

Figure 68 – standard-cell ASIC technology synthesis 

 

 

 

 

 

 

 

 

 

Compiler 
Optimization mode 

Logic utilization 

(ALMs) 
Total 

Registers 
Total 

pins 
Max 

Frequency 
@ 85C 

BALANCED 11477/359200 (3%) 9938 278/864 135,26 MHz 
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7. Conclusions  
 

This work entered Renesas project flow, which goal is to secure the next 

generation Ethernet networks that will replace the heterogeneous network 

automotive environment present nowadays. 

 

The realized system has been integrated as the above layer of the MACsec 

message exchange protocol developed by Renesas’ security team.  

Compliant with IEEE 802.1X-2010 standard, it is able to supply the essential 

security keying material for the whole MACsec protocol, which will add 

security services to the automotive area Ethernet networks. 

 

The synthetized modules fit the company’s requirements in order of area 

occupancy and latency.  

All these aspects makes the realized system a good entry point for the 

security requirements of the automotive field and to create a MACsec module 

which is fully compliant with the IEEE 802.1AE standard.  
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