Configuration File Manager: Architecture

Architecture diagram
Index

1. Commands manager...3
1.1 Main GUI...3
1.1.1 Commands handler..3

1.1.2 Data browser..4

1.2 Editor interface...5
1.3 Creator interface...6
1.4 External interface..8
2. XML Browser..9
2.1 XML parser...9
2.2 Handlers...10
2.3 Source Manager..11
3. XML Editor...12
3.1 Change Handler..12
4. XML Validation..13
4.1 XML file editor..13
4.2 Validation error manager..13
5. Source files...14
5.1 XML source file...14

5.2 DTD source file..14

5.3 Definition source file...14
5.4 External Library...15
[image: image1.jpg]Main GUI

Source

Commands
manager

XML
Browser

e

Commands

Editor External || Creator
interface interface| | interface
] . 3

XML parser ’

Dynamic Tibrary

Validation
error
manager

XML Validation

/ Changes handler

XML Editor

1. Commands manager
The commands manager is the component of the application that manages the interaction with the user. It is composed by four modules that have the role to process the inputs given by the user and display the output of the required operations.
1.1 Main GUI (Graphic User Interface)
The main GUI is the main module of the commands manager component. Its role is to manage the command requests handling the events caused by the user.

Once the main GUI receives a request, it gathers the information needed to perform the operation and pass the focus to the right handler for that operation.
The main GUI can be divided into three parts: the commands handler, the data browser and the source interface.
1.1.1 commands handler
The commands handler is the core of the Main GUI. It has to manage the interface buttons and send the operation requests to the right handlers.
The commands handler activates or deactivates the command buttons depending on the selected element:

- the remove button, the cut button and the copy button are available when an element is selected.

- the search button is available when at least one of the search fields is filled.

- the add button and the edit button are available when an element with attributes is selected.

- the paste button is activated when the cut command or the copy command have been executed.
The commands and their correspondent handler are:

- select element: when user is browsing the data and selects an elements, the commands handler sends to the XML parser module in the XML browser component a request for data displaying. The information needed by this command is the current selected element.

- search: when user selects the search button, the commands handler sends to the XML parser in the XML browser component a request for data search.

The information needed by this command is the element, the attribute and/or the value the application has to search. This information is provided by the user.

- cut, copy and paste elements: when user selects the cut or copy command, the commands handler stores the current selected elements. When the paste command is selected the command manager sends a request for copy elements or cut elements to the XML file editor in the XML validation component.
- add element: when user selects the add element command, the commands handler sends an add element request to the creator interface. The information needed by this command is the current selected element.
- edit element: when user selects the edit element command, the commands handler sends an edit element request to the editor interface. The information needed by this command is the current selected element.
- remove element: when user selects the remove element command, the commands handler sends a remove element request to the XML file editor module in the XML validation component. The information needed by this command is the current selected element.
- change source: when user selects the change source command, the commands handler sends a change source request to the source manager module in the XML browser component.

1.1.2 data browser

The data browser is the module that shows to the user the structure of the data contained in the source files. This information is represented as a tree where the nodes are the element of the XML source file. Each node is labeled with the name of the element and, optionally, one or more values of its attribute. Which attributes are to display is defined in the source files.

The data browser works using the representation of the data and not the data itself.

When the data browser receive from the command handler the request for data display, it refresh the shown tree if needed and send to the XML parser in the XML Browser component a request for attribute extraction, using as parameter the element selected by the user.

When the data browser receives the information to display from the XML parser, it shows to the user the attribute values of the current selected element, if this element has attributes.

1.1.3 source interface
The source interface is the module that manages the selection of the source files.
The figure represents the flow of calls generates to change the source files:

[image: image2.jpg]Commands manager XML Browser

Main GUI

Source manager

Fig 1.1.3.1: 1) the main GUI send a request for change the source files into the ones provided by the user. 2) the source manager changes the parameters used by the CFM system to access the source files
When the user selects the change source command, the main GUI makes visible the source interface.

The source interface allows the user to select the four files that the application utilizes (see chapter 5:“Source files” for a complete description).

Once the source files have been selected by user, the source interface sends a request for source files verification to the source manager in the XML browser component.

1.3 Editor interface
The editor interface is the module that manages the modification of existing elements.

When user selects to edit a selected element, the main GUI makes visible the editor interface.

The editor interface provides to the user the list of attributes of the selected element with the respective values. The user can select any attribute and modify its value.

Each attribute has a type. The type is defined in the definition source file (see chapter 5: “source files” for more details).

When the application starts, the XML parser in the XML Browser component creates a type data structure that contains the type of every attribute in the source file
For each different type the value checker perform a different check type:

- enumeration type: in this case the values the attribute can assume are directly provided as a list. The definition of the enumeration type in the definition source file requires that all its possible values are listed. It is also possible to set a default value among all the possible values.

- reference type: in this case the possible values are identified by a reference. The definition of this type requires an element name, called reference element, and an attribute name, called reference attribute.

The list of the possible value for this attribute is done scanning the entire XML source file:

while scanning, every time the current scanned element name is the same of the reference element, the value of its attribute that has the same name of the reference attribute is added to the list of possible values. If the same value appears more than 1 time, only the first occurrence is kept.

- external enumeration type: in this case the possible values list is created by the external library that is defined as part of the source files. The editor interface sends a request to the external interface using as parameters the type of the attribute. The external interface accesses the library and receives the list of possible values in the same format of the enumeration type.

- external type: in this case the attribute name and the value given by the user are passed as parameter to the external interface. The answer is if the value is valid or not.

- string type: no check is done.

For the attributes that has an enumerated type or a referenced type (see the chapter 5: “Source file” for a complete description of the types) the editor interface shows the possible values that they can assume. In this case the user can only select a value from the list.

Otherwise, the editor interface simply allows the user to write a general string. The validity of this string will be checked by the value checker when the user tries to store the changed element.

The user can abort the editing operation clicking on the cancel button.

At the end of the editing operation, the editor interface sends the modified element to the XML file editor in the XML validation component.
1.4 Creator interface
The creator interface is the module that manages the creation of new elements.

When user selects the command to create a new element, the main GUI makes visible the creator interface.

The creator interface scans the DTD source file creating a general representation of the valid structure of the XML source file.

The creator interface shows the user the list of the element that is possible to create as children of the current selected element. The user has to choose an element in this list. If the list is composed by only one element, the creator interface automatically chooses this element.
Once an element have been chosen, the creator interface checks the structure of this element and verifies if the element requires other elements in order to respect the structure defined in the source files.

The creator interface makes a list of required elements and proceeds to the creation of all of them. The elements with no attributes are automatically generated. The others are created with the interaction of the user.

The order of the elements creation depends on the possible dependencies between them (see the “reference” type description in the chapter 5: “Source file”): if an element depends for some reason by another one, first is created the element with no dependences.

When an element has been chosen for the creation, then the creator interface provides to the user the list of attributes of that element. The user can select any attribute and insert its value.
Each attribute has an associated type. The creator interface checks the values as it happens in the editor interface. It displays the available values and check the external ones.
The creator interface also checks that the user inserts a value in all the attributes that requires being not null.

Finally the creator interface asks the user in which position he wants to insert the created file, among the possible positions. User can skip this step. In this case the creator interface adds the element in the last available position.

The user can abort the creation operation clicking on the cancel button.

At the end of the creation operation, the creator interface sends all the created elements to the XML file editor in the XML validation component.

1.5 External interface
In the following image it is represented the flow of information when it is required to check the validity of an external typed attribute.
[image: image3.jpg]Commands Manager

XML Validation

Editor interface

XML file editor

External interface

Dynamic
library

Fig 1.5.1: 1) The editor interface requires to check the validity of an introduced value for an attribute with external type. 2) the external interface access the dynamic library (that is part of the source files) 3) the dynamic library answers to the external interface. 4) the external interface send back the answer to the editor interface. 5) if the value is valid, the editor interface send the request for storage changes to the XML file editor
The external interface is a module that is called to check if an attribute with external type is valid or not. As said before, the external typed attributes, are checked accessing a library that is provided as source file. The only limitation of this library is that it has to respect the interface requirement IR1 for the signature of the function that will be called by the external interface.
This allow the developers to do their own validity rules for the external check without change the CFM code.

2. XML Browser

The XML Browser is the component of the application that manages the interaction with the source files for all those operations that requires only reading the source files. In all cases, the XML Browser does not modify the content of the source files.

It is composed by three modules that have the role to extract data from the source files and represent it in a tree structure that is utilized by the rest of the application.

2.1 XML parser
In the following image it is represented the flow of calls done by the system in order to perform any among the data extraction operations (see Handlers for more information).

[image: image4.jpg]Commands manager XML Browser

Main GUI

XML parser

Handlers

3
Source

Fig. 2.1.1: 1) The main GUI sends an operation request to the XML Parser. 2) The XML Parser send the request to the right handler. 3) the handler extract the information from the source files. 4) The Handler sends the answer to the XML parser 5) the XML parser completes the operation request of the main GUI.
The XML parser works as interface between the representation of the data utilized by the main GUI and the data contained in the source files.

Its role is to forward the requests coming from the main GUI to the right handler.

Moreover the XML parser converts the parameters given by the main GUI, that are based on the representation of data used by the system, into parameters useful to perform the task working with XML.

Once the handler complete its job, the answer passes through the XML parser that sent it back to the main GUI.

2.2 Handlers

The handlers are the modules that extracts information from the source file. There are six handlers for five different operation:

- attributes extractor:

The attributes extractor needs an element as parameter.
The attributes extractor scans the source xml file until when it finds the element passed as parameter. Once it has found the element, it creates a list of the attributes and their values. Once this process has been completed, the data extractor sends back to the xml parser the list of attributes-values.

- tree creator:

Performing this operation the data extractor scans the whole source xml file collecting information about all elements. Moreover the tree creator collects some values of attributes belonging to each element. Which attributes have to be collected is defined into one of the source files.

All this information is utilized by the xml parser in order to build the tree that has to be displayed to the user. This tree represent the element structure of the source xml file and at the same time, in order to identify different elements that has the same name, the tree shows a subset of the value of the attributes.

- values validity rules collector:
the value validity rules collector scans the definition source file. This file contains extra information about the elements that compose the xml source file.

All this information is collected and stored in data structure that is used during the creation and modification processes.

A detailed description of the contents of the definition source file can be found in the chapter 5:”Source Files”

- referenced values extractor:

the referenced values extractor receives an element name and an attribute name as parameter. Optionally it can receive a restriction set as parameter as well.

Performing the operation the extractor searches all the possible different values that the attribute passed as parameter that belongs to the element passed as parameter can assume.

Using this information the extractor makes a possible value list and sends it back to the representation manager module.

- search list creator:

the search list creator receives an element name, an attribute name and a value (or only one or two of them) as parameter.

It scans the xml source file looking for those elements that match with the parameters.

With this information it creates a list and sends it back to the XML parser module.

2.3 Source manager

The source manager is the module that manages the selection of the current source files.
When the handlers need to read a source file, the source manager module creates the right input source.

There are four source files:

Xml source file: the file that contains the xml data.

DTD source file: the file that contains the structure of the XML source file.
Definition source file: the file that contains the extra information about the elements in the xml source file.
Dynamic library: the dynamic library utilized by the external checking of values.

When the source manager receives a change source request from the source interface, it checks that the new source files are valid: it checks that the xml source file respects the associated DTD and that the dynamic library is loadable by the system.

If the new source files are valid, the source manager set those new files as the current source files and send a create tree command to the XML pareser.

3. XML Editor

The XML Editor is the component of the application that manages the storage of changes done on the source files.
The XML editor is composed by a single module called change handler.

3.1 Change handler
The following figure represents the whole process done when some changes has been done and it is needed to store them in the source files.
[image: image5.jpg]XML validation

XML File editor

Commands manager

Editor interface

Valditation error
manager

4 (ok)

Change handler

XML Editor

Fig 3.1.1: 1)The editor interface (or the creator interface) sends the changes done to the XML file editor. 2) the XML file editor send to the changes handler a request for write the changes on a temporary file. 3) the change handler write the changes and ask the XML file editor to validate the new file. 4(ok)) if the validate process has no error, the XML file editor overwrite the source files using the temporary file. 4(err)) if the validate process has errors, the xml file send an error management request to the validation error manager. 5) the validation error manager warns the user and ask him if he wants to overwrite the source files anyway.
This module has the role to perform all the operations that changes the source files.

These operation are the remove operation, the edit element operation, the create operation and the paste operation.

In order to avoid errors in the source files, the change handler does not overwrite the source files directly. The change handler operates on a temporary files, where it stores the required changes.

Once it complete its task the temporary file is going to be checked by the XML validation component. Only if the structure of the temporary file is valid the source files are overwritten.

4. XML Validation
The XML Validation is the component of the application that validates the xml source file after a modification and manages the occurrence of errors.

It is composed by two modules.

4.1 XML file editor
The XML file editor module simply scans the file received by the change handler module in the XML editor component and checks that it is valid with respect to the DTD source file.
If during the validation process there are no errors, the module proceed to overwrite the source files with the received files.
Otherwise the validation module passes to the validation error manager the errors that are occurred during the process.

4.2 Validation error manager

The validation error manager has to warn the user that an error has occurred and that the changes done causes an error in the structure of the xml source file.

The error manager asks the user for three possible solutions:

- change element position:

the first possible solution is that the new element created is in a position that is not valid for the structure defined in the DTD file. So the solution consists first in rollback the execution until the position selection in the creator interface, and then to select a different position.

- save the file without overwrite the source file:

the second solution is save the file where an error occurs in a new file. In this case is possible to utilize this file as source without cause errors in the real source file.

In fact it is possible that in order to achieve a particular task, the file has to have a not valid structure in one or more steps.

The application allow the user to work as well on a not valid file, but it will warns the user in every steps in which

- overwrite source files:
the third solution is just overwrite the source files. If the user is sure that the changes he made have to be saved and it will correct the structure errors in some way (including with the help of the application), it can save the incorrect file and continue working on it.

5. Source files

There are four different files that the application utilizes as source files.

The source files can be selected by user one by one or selecting a .cfg file that is a collection of file paths that the application will keep as source.
The four source files are:

Xml source file: the file that contains the xml data.

DTD source file: the file that contains the structure of the XML source file.

Definition source file: the file that contains the extra information about the elements in the xml source file.

Dynamic library: the dynamic library utilized by the external checking of values.

5.1 Xml source file

The Xml source file is the main source file. The application mainly works on this file. The data displayed to the user are taken from this file and all the changes are stored in this file.
In general the xml source file is a XML format file in which the elements can have attributes of not, but they do not have information contained in the body of the element.

All the information is wrapped in the attributes of each element.

This is due to the application domain: the application has to work on all the configuration files and support files of the Etap translation system. All these files are thought to be changed in an xml format as described before.
5.2 DTD source file

The DTD (Document Type Definition) source file is the file that describes the structure of the XML source file. Using a standard DTD notation is possible describe the nesting order of the elements and which are the attributes that belongs to them.
The DTD source file is utilized in two ways by the application:

- The first is to validate the XML source file. Every time a change is made on the XML source file, the validation module performs a scan of the file, in order to confirm that the file is still a valid file with respect to its DTD.

- The second is to create a structure schema that the application utilizes when the user wants to add a new element: the schema provides information about which element can be added as child of the selected element. If more than one element can be added, the application asks the user which one he wants to add.
5.3 Definition source file

The definition source file is an xml format file that provides extra information about the attributes defined in the DTD source file. The attributes defined in the DTD source file are called DTD attributes.
Each DTD attribute should have a type definition. If an element does not have a type definition, it is set as “string” type by default.

A type definition is made using a “type definition” element in the definition source file.
The possible types are (note: in order to avoid ambiguity, “DTD elements” and “DTD attributes” are the elements and attributes defined in the DTD source file, “definition elements” and “definition attributes” are the elements and attributes belonging to the elements of the definition source file):

Enumeration type: the DTD attribute can assume only a set of values that is defined by enumeration. This set is defined using a definition attribute.
Referenced type: the DTD attribute can assume only a set of values that is defined as a reference to another DTD attribute. In the definition element of referenced type, a definition attribute contains the reference information: a DTD element name (called reference element) and a DTD attribute name (called reference attribute). The set of values is done scanning the whole XML source file looking for all the DTD elements that has the same name of the reference element. For each of this DTD elements, it is collected the value assumed by the reference attribute. The set of all the possible values of the reference attribute in all the reference elements is the set of values that the DTD attribute can assume.
External Enumeration type: the DTD attribute can assume only a set of values that is defined by enumeration. In this case instead of simply list all the possible values, a definition attribute describes in which file it is possible to collect the admitted values. The list of the possible values is made passing the definition attributes to the external function defined in the dynamic library: the function return the list in the correct format.

External type: the DTD attribute can assume only a set of values defined in a file. The check for the value validity is made by the external function defined in the dynamic library source file.

String type: the DTD attribute can assume all values.
In the definition XML file it is possible to add more extra information:

- Local restriction: it is possible to select a reference type attribute belonging to an element and restrict the set of its value. This means that during the collection of the values the application does not scan the whole file, but only a subset of it.
- display attributes: in order to make different the elements in the tree representation, they are associated with one or more values of their attributes. In this extra information it is listed which attributes has to be shown.

- unique attribute: it is possible to select an attribute and make that its value unique among the element belonging to the same sub-tree and that are at the same depth level.
5.4 Dynamic library

The dynamic library is a source file that contains a routine with a strict format. This allows the developers to write extern code that will be used by the application.
This means that for all the attributes that have “external” type or “external enumerated” type, it is possible to create a specific function that checks their validity.

The function defined in the library has to have always the same signature. The application calls it from java environment utilizing the Java Native Interface. In this way the function can be written in every language supported by the Java Native Interface.

In general the dynamic library has the role of a user defined check on the attribute values.

PAGE
1

