Configuration File Manager: high level design

High level design

Index

1. Introduction......... ..2
2. Functional blocks overview...3
2.1 Commands manager..3
2.2 XML browser...3
2.3 XML editor...3
2.4 XML validation..3

3. Conceptual map...4

4. Blocks description..5
4.1 Commands manager..5
4.2 XML browser...6
4.3 XML editor...6
4.4 XML Validation...7
1. Introduction
We are going to describe the conceptual design for the CFM (Configuration File Manager) application. The CFM has to be a general maintenance tool for all the support data that the Etap translation system uses during its tasks.

As said before in the “Proposed solution” paragraph of the Introduction document, all support data files have to be defined using a general formalism. Thanks to the usage of this unique formalism, the CFM can be enough general to be used on every support data file.

We decided to use XML (Extensible Markup Language) as mechanism to define the structures of the support data files.
We decided this because the XML give us some powerful tool in order to operate on structured information as the support data has to be.
In general a XML document is composed by elements. Each element is defined by an open tag, a body and a close tag.
Each element has a name and can have some attributes associated: each attribute has a name and a value.
It is possible to define the structure an XML document has to respect. It can be done creating a description of the sequence of elements we consider valid. The process to check if a document respects one of those structure definitions is known as validation.

We decided to store the support data as attributes in a XML document. So all support data file will have a defined XML structure, that can be described using XML itself, and all the needed data is contained in the attributes of the elements belonging to the XML document.

2. Functional blocks overview
The application is composed by the following functional blocks:

2.1 Commands Manager
	Description
	This block consists of those functionalities that make the application usable by the user.

	Features
	- contains the buttons to perform the commands provided by the XML Browser and XML Editor blocks
- displays a representation of the data contained in the source files
- allows the user to change the source files

- utilize the set of value validity rules contained in the source files (see Requirements Document)

- performs cut and copy commands

	Requisites
	UR1,UR2,UR3,UR4,UR5,UR6,UR7,UR8,FR 11, IR1

2.2 XML Browser
	Description
	This block consists of those functionalities that require interaction with the source files without modifying them.

	Features
	- reads the source file extracting the data
- creates a representation of the data contained in the source files
- collects the value validity rules that have to be applied on the data. These restriction are defined in the source files
- performs search command

	Requisites
	FR1,FR2,FR3,FR4,FR5,FR6,FR7

2.3 XML Editor
	Description
	This block consists of those functionalities that require data modification and data storage in the source files.

	Features
	- writes the modified data in the source files

- performs paste, remove, edit and create commands

	Requisites
	FR6,FR7,FR8,FR9,FR10

2.4 XML Validation
	Description
	This block consists of those functionalities related to the validation of the modified data in the source files.

	Features
	- checks the validity of the source files with respect to their DTD
- manage the occurrence of a validation error

	Requisites
	FR12,FR13,FR14

3. Conceptual map

This is a conceptual representation of the functional blocks and the relations that occurs between them.

[image: image1]
4. Blocks description
4.1 Commands manager
The commands manager is the block that manages the interaction between the user and the application.

It can be conceptually divided into two parts:

- Data browser section:

This section is composed by those components of the commands manager that allow the user to browse the data contained in the source files. This section only provides information to the users, and do not allow the user to perform any operation on the data. The data will be displayed in a structured form, making easier for the user the navigation among the elements. This structured form of the data do not displays all the information contained in the source file. User can select a single element in order to extract all the information related to that element: when the user selects an element, all its attributes are displayed.
- Commands panel:
This section is composed by those components of the commands manager that allow the user to perform commands. There is a button for each command the application can perform:

- edit: allows the user to modify an existing element.

- add: allows the user to add a new element.

- remove: allows the user to remove an existing element.

- cut: allows the user to select elements that will be moved in another position.

- copy: allows the user to select elements that will be copied in another position.

- paste: allows the user to select the position where move or copy the previously selected elements

- search: allows the user to perform a search of an element, an attribute or a value.

- change source: allows the user to select different files to use them as source files.

When the selected operation is add or edit, the command manager also checks that the values inserted by the user are consistent with the value validity rules extracted by XML Browser component (see below: 3.2).

4.2 XML Browser
XML Browser is the block that manages the extraction of information from the source files and the representation of the extracted information. All the functions it provides do not modify the source files.

XML Browser reads the source file using an XML parser. It stores the relevant information and makes it available to the application: reading the XML source, it builds a structured representation of the extracted data. This representation is used by the Command manager block in order to make available to the user the data browser feature.
XML Browser performs all the commands that are related with the extraction of information from the source files, such as the search command or the extraction of working data: when such operations are required, the XML Browser access the source files, looking for the information needed to complete the task.

XML Browser extracts the values validity rules that the attributes must respect. In the source files is defined a limitation with respect to the values each attribute can assume.
These restrictions can be of the following type:

- enumeration: the attribute can only assume an enumerated set of values.

- reference: the attribute can only assume a value among a referenced set of values

- external: the attribute can only assume a value contained in an external file

- string: have no restrictions.

4.3 XML Editor
XML Editor is the block that manages the modification of the data and the storage of changes in the source files. All the functions it provides modify the source files.

XML Editor performs all the commands that should change the source data, such as paste, add element, edit element and remove element. When such commands are required the XML Editor saves the modification in temporary files. Each time the editor have to overwrite the source files, it requires to the XML Validation block to validate the temporary files in order to be sure that these files maintain the required structure.
Combining the validation and the value validity rules applied in the Command Manager the CFM grants that the modified files saved are valid for later utilization.
4.4 XML Validation
The XML Validation is the block that manages the validation process of the source files.
The XML validation scans the temporary files created by the XML Editor and verifies that they are valid files. If the validation process ends correctly, the XML validation overwrite the source files using the temporary ones.

The XML Validation manages the occurrence of a validation error, displaying a warning to the user and asking him what the application should do in order to cope with that error.

User interaction

Data extraction

Data representation

Validation confirmation

Validation request

Perform command: paste, edit, create, remove

Command requests: paste, edit, create, remove

Source files

XML Editor

XML Validation

XML Browser

User

Command manager

PAGE
1

