Configuration File Manager: requirements Specification

Software Requirements Specification for Configuration File Manager
Index

1. Introduction..2

1.1 purpose..2
1.2 Intended audience and reading suggestion..2

1.3 Project scope...2

2. Overall description...3

2.1 Product perspective...3

2.2 Product features...3

2.3 User classes...3

2.4 Design and implementation constraints...3

2.5 Documentation...4

3. System features..5
3.1 Input extraction..5
3.2 Data representation...5
3.3 Data management..6
3.4 Values validity check...7
3.5 Structure control..7
4. External interface requirements...8
4.1 User interface requirements..8
4.2 interface requirements...8
5. Use cases..9

1. Introduction

1.1 Purpose
In this documents are listed the requirements for the application called CFM (Configuration File Manager). The CFM is a system for the maintenance of the configuration and support files of an automatic translation system called ETAP.
The document contains the functional requirements, the user requirements, the interface requirements and some use cases.

1.2 Intended audience and reading suggestion

This document is done for developers of the ETAP translation system, both programmers and linguists, and for the project tutors.

In order to understand it in the best way, I suggest to linguists and tutors to read before the design and implementation constrains, in order to understand the reason of the decision taken in the feature descriptions.

For developers, who already knows the constrains, I suggest to skip directly to the project feature description

Finally for those who are new to the system, I suggest to read the overall section and the use cases section, in order to understand what is the main purpose of the project.
1.3 Project scope

This project aims to create a useful tool for the developers of the Etap translation system.

The Etap system works using a set of files that contains configuration settings and information needed to perform the stages of the translation. These files needs to be modified in order to add to the system all the data needed to work.

This project wants to provide a tool able to help the developers to manage these data, minimizing errors and enhancing the quality of the work.
2. Overall description
2.1 Product perspective

The product is a self-contained application that works on the support files of the Etap translation system. The product is a new tool for the management of the support and configuration files. There are not previous version of this application.

2.2 Product features

The product can access every support files belonging to the Etap system that respects a formal structure. This structure can be different from file to file, but follows the same formalism and the structure has to be provided as input to the product in order to work correctly. The product can access the files changing the values contained without change the general structure of the file. It can add new data, remove or modify existing data, but always respecting the structure constraints.
2.3 User classes

There are mainly two classes of users:

The Etap program developers, that are working on Etap code and uses the product when they need to change something in the support data to make it compatible with the system.

The Etap linguist developers, that can access information related to linguistic features.

2.4 Design and implementation constraints

We consider 4 input files for the product:

- Source data
These are the data the system is working on. All the operation the product performs are on these data. These are also the only data in the system that can be modified by the application. Working data are contained in a file called data source file.
- Working data structure

Data in source files is organized in a formal structure. This allow the product to correctly extract the working data from the source files. The structure description is contained in a file called structure source file.
- Value validity rules

Each data in the working data can assume different values. Data have to belong to a group among the ones defined below. Depending on which group a specific data belongs to, there are rules that defines what is the range of values that data can assume.

The groups are:
1. Enumeration. The possible values are directly provided in a list. The value must be one among the provided ones.

2. Reference. The possible values can be extracted from a region of the data source file. The value must belong to one among the extracted ones.

3. External. The possible values are defined in another file, external to the CFM. The possible value must belong to one among the extracted ones form this external file.

4. Free. The value has no restrictions.

Moreover each data can be defined Unique if a value can appear only one time in the data source file.

The value validity rules are specified for every data and they are stored in a file called definition source file.

- Dynamic library
This is the name of the library that contains a function used in the value validity rule that has to extract the possible values from an file that is extern of the CFM.
2.5 Documentation
The following documentation will be delivered with the software:

1. High level design: document containing the conceptual description of the product.

2. Architecture: document describing the components of the product and their behaviour

3. Detailed design: pseudo-code of the function that will be implemented.

4. Test document: series of test in order to prove that all the requirements have been covered .

5. User manual: description of use cases in order to make the user able to use the application
3. System features
3.1 Input extraction

3.1.1 Description

The input extraction feature consists in read the input files and extract all the information required by the CFM in order to perform the other tasks.

This includes the extraction of the working data, the extraction of the structure of the working data and the extraction of the values validity rules.

3.1.2 Action-response sequence

There is no action-response. The input files have to be available when needed by the other features. Working data has to be extracted in order to work on it.
3.1.3 Functional requirements
FR1. The CFM reads the working data from a file called data source file.

FR2. The CFM reads which is the structure used in the data source file from a file called structure source file.

FR3. The CFM reads the value validity rules from a file called definition source file.

3.2 Data representation
3.2.1 Description

The CFM represents the extracted source data in a proper format. It uses this representation to make changes in the data. When the modifications have to be stored, it translates the represented data into the structured data for the source data file, respecting the structure of the files.
3.2.2 Action-response sequence

When data is ridden, the CFM represent this data in its format.
3.2.3 Functional requirements

FR4. The CFM creates a representation of the working data. The CFM utilizes this representation to perform all the actions.

3.3 Data management
3.3.1 Description

The CFM can perform a series of actions on the data: it can look for a specific data, move a data in another position, copy data, delete a specified data, modify a specified data and create new data
3.3.2 Action-response sequence

When a command request is produced, the system perform the selected action.
3.3.3 Functional requirements

FR5. The CFM can find a specified data in the data source file. This action is called Search.

FR6. The CFM can make a copy of a specified data in the data source file. This action is called copy – paste.

FR7. The CFM can move a specified data from a position into another in the data source file. This action is called cut – paste.

FR8. The CFM can delete a specified data from the data source file. This action is called remove.

FR9. The CFM can modify a specified data from the data source file. This action is called edit.

FR10. The CFM can add a new data in the data source file. This action is called create.

3.4 Values validity check
3.4.1 Description

The CFM checks that all the modified values and all the introduced values respects the validity rules contained in the source files.
3.4.2 Action-response sequence

When an edit or create operation is performed, the system checks the values involved in the operation
3.4.3 Functional requirements

FR11. The CFM applies the value validity rules (reference to FR3) to the modified and added data. It grants the edit and create actions introduces only valid values. It manages the occurrence of not valid values.

3.5 Structure control
3.5.1 Description

Every time the CFM has to modify the source files, it has to check that the defined structure is valid and the values are valid values.
3.5.2 Action-response sequence

When it is required to store the changes done, the system check the structure of the modified files.
3.5.3 Functional requirements
FR12. The CFM overwrites the data source file in order to store any change done on the representation, only if the values are valid and the structure of the file is correct.

FR13. The CFM checks that the structure of the modified data source file still respects the format defined in the structure source file (reference to FR2).

FR14. The CFM manages the occurrence of an error in the structure of the modified data source file warning the user.

4. External interface requirements
4.1 User interface Requirements

UR1. The user can select the source files that the CFM uses to work.

UR2. The user can browse the representation (reference to FR1) of the data source file created by the CFM.

UR3. The user can specify a data and request to the CFM to perform a search action (reference to FR5).

UR4. The user can specify a data and request to the CFM to perform a copy – paste action (reference to FR6).

UR5. The user can specify a data and request to the CFM to perform a cut – paste action (reference to FR7).

UR6. The user can specify a data and request to the CFM to perform a remove action (reference to FR8).

UR7. The user can specify a data and request to the CFM to perform a edit action (reference to FR9).

UR8. The user can request to the CFM to perform a create action (reference to FR9).
4.2. Interface Requirements

IR1.The value validity rule for the external check has to respect the following interface:
String externalCheck(String data, String description, boolean createIfNoExist)
and it should return a String.
5. Use cases

5.1

Use case name:
Browse data
Description:
The user can browse the data contained in the source files. He can select a single element in order to see all information relative to this element.
Notes:
- The application shows as default a subset of the attributes belonging to the elements. All attributes are shown only if the element is selected by user. The list of the attribute displayed as default is defined in the source files.

- Depending on the selected element, the application makes available the operations allowed on that element.
5.2
Use case name:

Add element
Description:

The user can add a new element.
Notes:
- The application makes available the “add element” command only if it is possible to add a new element. It is possible to add a new element only if an element is selected and this element admit the presence of elements in its body as defined in the DTD.

- If more than one element can be added, the application asks the user which element to add.

- If the creation of one element requires the creation of other elements as well, the application warns the user and proceeds to create all the needed elements.

- The application checks that the values introduced by the user are valid with respect to the set of restrictions defined in the source files. It also controls that all the required attributes of the element have been introduced.

- The application asks the user the position where it has to introduce the new element.

- The application validates the obtained file before save it. If it is not valid, the application asks if the user wants to save the file overwriting the source file or save it as new file.

- The user can abort the “add element” command selecting a “cancel” button.
5.3
Use case name:

Edit element
Description:

The user can edit the values of the attributes of an existing element.
Note:
- The application makes available the “edit element” command only if an element with attributes is selected.

- The application checks that the values introduced by the user are valid with respect to the set of restrictions defined in the source files.

- The user can abort the “edit element” command selecting a “cancel” button.
5.4
Use case name:

Remove element
Description:
The user can remove an existing element.
Notes:
- The application makes available the “remove element” command when an element is selected.

- The application always asks for confirmation when the user requires an element removal.

- The application validates the obtained file before save it. If it is not valid, the application warns the user and it asks him if he wants to save the file overwriting the source file or save it as new file.
5.5
Use case name:

Copy-paste element
Description:

The user can select one or more elements and copy them to another position.
Notes:
- The application memorizes the selected elements when the “copy” command is activated.

- The application writes a copy of the selected elements in the position selected by the user.
5.6
Use case name:

Cut-paste element
Description:

The user can select one or more elements and move them to another position.
Note:
- The application memorizes the selected elements when the “cut” command is activated.

- The application removes the selected elements and writes a copy of them in the position selected by the user.
5.7
Use case name:

Search element, attribute or value
Description:
The user indicates an element, an attribute and a value (or just one or two of them). The application scans the data looking for the required data.
Note:
- The “search” command is available when an element, an attribute or a value are indicated by the user.

- If more than one result is available, the application shows all results one by one.
5.8
Use case name:

Change source files
Description:

The user can change the source files.
Note:
- When the user selects new source files, the application check that the selected files are valid and usable by the application. If the files are not valid, the application warns the user.
PAGE
1

