Thesis etd-10022021-165356 |
Link copiato negli appunti
Thesis type
Tesi di laurea magistrale
Author
FURIO, LORENZO
URN
etd-10022021-165356
Thesis title
Finiteness of Multiplicatively Dependent n-tuples of Singular Moduli
Department
MATEMATICA
Course of study
MATEMATICA
Supervisors
relatore Prof. Bilu, Yuri
correlatore Dott. Lombardo, Davide
correlatore Dott. Lombardo, Davide
Keywords
- algebraic number theory
- diophantine geometry
- elliptic curves
- number theory
- Pila-Wilkie
- singular moduli
- unlikely intersections
Graduation session start date
29/10/2021
Availability
None
Summary
The aim of the thesis is to explain a result of Pila and Tsimerman stating that for every positive integer n there exist finitely many multiplicatively dependent n-tuples of singular moduli, excluding trivial cases with dependent subsets. The main ingredient of the proof is the theorem of Pila-Wilkie. In particular, one defines a particular set X of quadratic points, corresponding to the dependent n-tuples of singular moduli, then with some arithmetic estimates finds a lower bound for the number of points with bounded height, depending on the height. The theorem of Pila-Wilkie shows that the number of quadratic points in the transcendental part of X grows less than the lower bound, then they must be contained in the algebraic part of X. With some mixed Ax-Schanuel results we show that an algebraic subvariety of X containing a singular-dependent n-tuple must be atypical and with some other work we show that such a subvariety cannot exist. This concludes the proof.
File
| Nome file | Dimensione |
|---|---|
Thesis not available for consultation. |
|