Thesis etd-07042023-003619 |
Link copiato negli appunti
Thesis type
Tesi di laurea magistrale
Author
BENSI, SIMONE
URN
etd-07042023-003619
Thesis title
Using stigmergy-based similarity methods to Distinguish Event-Specific Topics in Social Discussions
Department
INGEGNERIA DELL'INFORMAZIONE
Course of study
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Supervisors
relatore Prof. Cimino, Mario Giovanni Cosimo Antonio
relatore Prof. Alfeo, Antonio Luca
relatore Prof. Galatolo, Federico Andrea
relatore Prof. Alfeo, Antonio Luca
relatore Prof. Galatolo, Federico Andrea
Keywords
- microblog analysis
- receptive field
- stigmergy
- term cloud
- time series similarity
Graduation session start date
21/07/2023
Availability
Withheld
Release date
21/07/2026
Summary
To achieve the goal of distinguishing event-specific topics in social discussions a stigmergy-based architecture has been used. The stigmergy represents a type of spontaneous arrangement, derived from ants behavior inside colonies. To allow this architecture to work properly we collected a huge amount of textual data from a dataset containing tweets about a very important event. Those data were properly cleaned and filtered to obtain time series that could be managed from the stigmergic architecture. Each time series has been divided in temporal windows, each of them labeled as a specific archetype. The core of the proposed system is composed basically of two levels: the first one aims to assign to each temporal window the most similar archetype, while the second one receives for each time series a sequence of the associated archetypes and tries to group them according to the similarities between these sequences. This technique revealed very powerful in grouping sentence terms correctly in clusters.
File
Nome file | Dimensione |
---|---|
The thesis is not available. |