ETD

Digital archive of theses discussed at the University of Pisa

 

Thesis etd-06082003-134139


Thesis type
Tesi di laurea vecchio ordinamento
Author
Castellucci, Annalisa
email address
annalisacastellucci@yahoo.com
URN
etd-06082003-134139
Thesis title
La legge del logaritmo iterato
Department
SCIENZE MATEMATICHE, FISICHE E NATURALI
Course of study
MATEMATICA
Supervisors
relatore Prof. Letta, Giorgio
Keywords
  • iterated logarithm
  • discrete martingales
  • stochastic integrals
  • area process
  • Skorohod representation
Graduation session start date
03/07/2003
Availability
Full
Summary
Questo lavoro riprende le tappe fondamentali della legge del
logaritmo iterato che stabilisce, nella sua formulazione più
classica, che l'ordine di infinito di una passeggiata aleatoria è
lo stesso della successione $sqrt{nloglog n}$. Si inizia con lo
studio delle passeggiate aleatorie semplici simmetriche e,
passando attraverso la dimostrazione della legge del logaritmo
iterato nel caso del moto Browniano, si rivisita una versione di
questo teorema per alcuni tipi di martingale a tempi discreti.

Si passa poi alla legge del logaritmo iterato per alcuni tipi di
integrali stocastici, come per esempio il processo area di Lévy,
del quale si dà anche una interpretazione nel gruppo di
Heisenberg, e per il quale si stabilisce come ordine di infinito
quello della funzione $tloglog t$.

Infine si dimostra la validità di un analogo della legge del
logaritmo iterato nel caso di un doppio integrale stocastico
rispetto ad un moto Browniano.-----(English version)-----In this work we go through the main steps in the evolution of the Law of the Iterated Logarithm (LIL) which states, in his most classical formulation, that the infinity order of a random walk is the same of the sequence $sqrt{nloglog n}$. We start by studying the simple symmetric random walk and, going through the proof of LIL for Brownian Motion, we see a version of this theorem for some kind of discrete martingales.
Then we turn to LIL for some kind of stochastic integrals, such as the area process by Lévy, for which we give also an interpretation in the Heisenberg group, and for which it is found that its infinity order is the same as the function $tloglog t$.

In the end, an analogous of LIL for double stochastic integrals with respect to Brownian Motion is proved.
File