Thesis etd-06072021-081418 |
Link copiato negli appunti
Thesis type
Tesi di laurea magistrale
Author
BOTTI, ADRIANO
URN
etd-06072021-081418
Thesis title
Addressing high-dimensional biclustering of cancer omics data: indications from computational experimentations
Department
INGEGNERIA DELL'INFORMAZIONE
Course of study
COMPUTER ENGINEERING
Supervisors
relatore Prof. Bechini, Alessio
correlatore Prof. Marcelloni, Francesco
correlatore Dott.ssa D'Aurizio, Romina
supervisore Dott. Renda, Alessandro
correlatore Prof. Marcelloni, Francesco
correlatore Dott.ssa D'Aurizio, Romina
supervisore Dott. Renda, Alessandro
Keywords
- biclustering
- bioinformatics
- cancer data analysis
- high-dimensional data clustering
- omics data analysis
Graduation session start date
21/06/2021
Availability
Full
Summary
Recent advancements in methodologies for extracting omics data opened up new perspectives in the study of different types of oncologic diseases. The exploitation of massive cancer omics data requires proper data mining tools and algorithms, able to address all the challenges posed by their high dimensionality and the presence of high noise levels. The computational experiments carried out in this thesis work focus on the use of biclustering techniques, and aim to propose a possible workflow for a proper use of biclustering over high-dimensional omics data.
File
| Nome file | Dimensione |
|---|---|
| TesiBotti.pdf | 1.04 Mb |
Contatta l’autore |
|