Thesis etd-04212020-151922 |
Link copiato negli appunti
Thesis type
Tesi di laurea magistrale
Author
BARGAGNATI, GIUSEPPE
URN
etd-04212020-151922
Thesis title
The spectrum of simplicial volume
Department
MATEMATICA
Course of study
MATEMATICA
Supervisors
relatore Prof. Frigerio, Roberto
Keywords
- simplicial volume
- stable commutator length
Graduation session start date
08/05/2020
Availability
Full
Summary
Nella tesi, ripercorriamo un articolo di Heuer e Loeh del 2019 ("The spectrum of simplicial volume"), in cui si dimostra che in dimensione maggiore o uguale a 4, i volumi simpliciali delle varietà connesse chiuse orientate di dimensione fissata formano un insieme denso nei numeri reali positivi. Inoltre, si riesce a dimostrare che in dimensione 4 ogni numero razionale positivo è realizzabile come volume simpliciale di una 4-varietà connessa chiusa orientata. La dimostrazione utilizza risultati di teoria dei gruppi per collegare la stable commutator length con la norma l^1 di alcune 2-classi nell'omologia singolare di certi gruppi; queste classi vengono promosse a classi di dimensione più alta usando il prodotto cross. Si utilizza infine un teorema dovuto a Thom per ricavare varietà con volume simpliciale controllato.
In the thesis, we cover an article by Heuer and Loeh of 2019 ("The spectrum of simplicial volume"), where it is shown that in dimension greater than or equal to 4, the simplicial volumes of oriented closed connected manifolds of fixed dimension form a dense subset of the positive real half-line. Moreover, it is proved that in dimension 4 every positive rational number can be realized as simplicial volume of an oriented closed connected 4-manifold. The proof relies on group theoretic results to relate stable commutator length to l^1-norm of some 2-classes in singular homology of certain groups; these classes are promoted into classes of higher dimension using cross product. Eventually, thanks to a theorem by Thom we can obtain manifolds with controlled simplicial volume.
In the thesis, we cover an article by Heuer and Loeh of 2019 ("The spectrum of simplicial volume"), where it is shown that in dimension greater than or equal to 4, the simplicial volumes of oriented closed connected manifolds of fixed dimension form a dense subset of the positive real half-line. Moreover, it is proved that in dimension 4 every positive rational number can be realized as simplicial volume of an oriented closed connected 4-manifold. The proof relies on group theoretic results to relate stable commutator length to l^1-norm of some 2-classes in singular homology of certain groups; these classes are promoted into classes of higher dimension using cross product. Eventually, thanks to a theorem by Thom we can obtain manifolds with controlled simplicial volume.
File
Nome file | Dimensione |
---|---|
The_spec...olume.pdf | 748.22 Kb |
Contatta l’autore |