Home ETD
banca dati delle tesi e dissertazioni accademiche elettroniche
Università di Pisa
Sistema bibliotecario di ateneo
Tesi etd-11082006-161824
Condividi questa tesi: 
 
 

Tipo di tesi Tesi di laurea specialistica
Autore Martini, Alessio
Indirizzo email martini@mail.dm.unipi.it
URN etd-11082006-161824
Titolo Notazioni ordinali e progressioni transfinite di teorie
Settore scientifico disciplinare SCIENZE MATEMATICHE, FISICHE E NATURALI, FACOLTA'
Corso di studi MATEMATICA
Commissione
Nome Commissario Qualifica
Alessandro Berarducci Relatore
Parole chiave
  • progressioni transfinite
  • insiemi iperaritmetici
  • predicatività
  • principi di riflessione
  • notazioni ordinali
Data inizio appello 2006-11-24
Disponibilità unrestricted
Riassunto analitico
La tesi parte dall'idea di Turing e Feferman di volgere in senso positivo il risultato di Goedel: se l'aritmetica di Peano del primo ordine, PA, non è in grado di dimostrare né di confutare la propria consistenza, Con(PA), allora PA + Con(PA) è una teoria dell'aritmetica più potente di PA; iterando questo procedimento (cioè considerando PA + Con(PA) + Con(PA + Con(PA)), ecc...) si ottengono teorie che sempre meglio approssimano la verità aritmetica. Per dare significato all'iterazione nel transfinito, occorre che le teorie via via ottenute siano ricorsivamente assiomatizzabili e quindi è necessario utilizzare, invece degli ordinali, una loro versione intensionale: le cosiddette notazioni ordinali.
Nella tesi si discute dunque innanzitutto il concetto di notazione ordinale, evidenziandone possibili definizioni e principali proprietà.
Si utilizzano quindi tali notazioni per la costruzione delle progressioni transfinite di teorie basate sulla consistenza o su più potenti principi di riflessione, dimostrando per queste risultati di completezza dovuti a Turing e Feferman.
Si confrontano poi le progressioni di teorie, pensate come strumento per approssimare la verità aritmetica, con l'aggiunta alla teoria degli insiemi di nuovi assiomi quali l'esistenza di un cardinale inaccessibile.
Infine si mostra come le notazioni ordinali e le progressioni transfinite di teorie possano essere utilizzate per la formalizzazione dei concetti di definibilità e dimostrabilità predicativa.
File
  Nome file       Dimensione       Tempo di download stimato (Ore:Minuti:Secondi) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)    piu' di 128 Kb  
  tesi.pdf 718.87 Kb 00:03:19 00:01:42 00:01:29 00:00:44 00:00:03
Contatta l'autore