Tesi etd-09262012-101649 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
XHAGJIKA, VAMIS
Indirizzo email
vamis.xhagjika@gmail.com, xhagjika@cli.di.unipi.it
URN
etd-09262012-101649
Titolo
Behavioural Skeletons in FastFlow
Dipartimento
INFORMATICA
Corso di studi
INFORMATICA
Relatori
relatore Prof. Danelutto, Marco
Parole chiave
- algorithmic skeleton
- autonomic computing
- behavioural skeleton
- fastflow framework
- programmazione parallela
Data inizio appello
12/10/2012
Consultabilità
Non consultabile
Data di rilascio
12/10/2052
Riassunto
This thesis work consists in the implementation of a version of the Behavioural Skeletons (BS)
within the structured parallel programming framework FastFlow (FF). Therefore design,
implementation and experimentation are here considered and discussed.
Furthermore, with the introduction of the BS in FastFlow, we implement a fully
functional Autonomic System for run-time optimization of non-functional concerns.
Extensive details are given for the design and implementation choices of the autonomic
components.
Moreover we discuss design and implementation choices for modifications
to the already present algorithmic skeletons of FF. The above mentioned variations give
the skeletons dynamic features, permitting run-time changes of their structure. As for the
management subsystem, we discuss the realization of sensors and actuators (Autonomic Controller)
for the normal FF skeletons and the different available models for the
management components (Atonomic Managers).
Experiments are conducted to demonstrate the features of the newly extended FastFlow framework,
with functional experiments covering the majority of the implemented components and an example
of run-time optimiziation of a composed complex Behavioral Skeleton structure.
In conclusion, we have demonstrated succsessful design, implementation and experimentation of
Behavioural Skeletons, typical constructs of distributed computing, in the different context
of parallel computing. Which leads to a fully functional autonomic system model for the FastFlow
framework.
within the structured parallel programming framework FastFlow (FF). Therefore design,
implementation and experimentation are here considered and discussed.
Furthermore, with the introduction of the BS in FastFlow, we implement a fully
functional Autonomic System for run-time optimization of non-functional concerns.
Extensive details are given for the design and implementation choices of the autonomic
components.
Moreover we discuss design and implementation choices for modifications
to the already present algorithmic skeletons of FF. The above mentioned variations give
the skeletons dynamic features, permitting run-time changes of their structure. As for the
management subsystem, we discuss the realization of sensors and actuators (Autonomic Controller)
for the normal FF skeletons and the different available models for the
management components (Atonomic Managers).
Experiments are conducted to demonstrate the features of the newly extended FastFlow framework,
with functional experiments covering the majority of the implemented components and an example
of run-time optimiziation of a composed complex Behavioral Skeleton structure.
In conclusion, we have demonstrated succsessful design, implementation and experimentation of
Behavioural Skeletons, typical constructs of distributed computing, in the different context
of parallel computing. Which leads to a fully functional autonomic system model for the FastFlow
framework.
File
Nome file | Dimensione |
---|---|
La tesi non è consultabile. |