1. Multimedia Applications

Multimedia applications are becoming always more conmmon arnd requested. The GSM
short text messages have evolved in multimedia messages, that may send text, audio, images and
videos. Many of the services that will soon be available on the UMTS system are already
suocessful services on the Intermet. This is due to the rapid conwvergence between the Intermet
world and the Mobile Commumnications world. The trerd is to provide on mobile terminals all
nmultimedia services and applications the users can access on the Intermet.

The Mobile world is now equipped to provide nultimedia services to mobile users. Some
service platforms have been defined and standardized, such as the MMS (Multimedia Messaging
System) platform that enables the exchange of muitimedia messages and the IMS (IP Multimedia
Subsysterm) domain that will supply IP-based services.

In this chapter some of these services, that are already deployed on the UMT'S or soon

11 Presence

111 Introduction

First Presence Services appeared on the Intemet some years ago and at the begirming
nobody expected that they would demonstrate to be so suocessful to become one of the most
promising enabling services of the mobile world.

The basic need to know if your friend is on line at a specific time is common to both
Intermet and Mobile world. It represents the first expression of the concept of presence. This
conoept has been extended to include a mumber of other useful information about people the
user wartts to interact with.

The initial success of the presence service is infrinsically bound to the success of Instant
Messaging (IM) applications. However, now it is clear that presence service is a more general
enabling technology which is expected to play a relevant role for the enrichment of mumerous
services.

The opportunity to manage presence information and to reproduce on the nmobile the
success of Intermet presence and instant messaging applications justify the interest of the mobile
world to this service.

This paper discussed the status of the art of presence services and provides an overview

of the challenges and the opportunities presented to mobile operators by presence services.

112 Presence services and the standardization

Even if initially Instant Messaging and Presence (IM&P) solutions were bom from
spontaneous or local Intermet initiatives, quite early the need to have solutions for interoperability
has brought the discussion about presence services into standardization.

First standardization efforts have been done by Intemet Engineering Task Force (IETF).
The Working Group (WG) that has leaded this work is called Instant Messaging and Presence
Protocol (IMPP).

The RFCsissued by IMPP, RFC 2778 and 2779, represent the reference for the definition
of main presence concepts. Within IETF, the most relevant results form a mobile perspective are
those obtained by both IMPP and the SP for Instant Messaging and Presence Leveraging
Extensions (SMPLE) WG because they have provide the basis for the 3GPP specifications of
the Presence Service (PS.

It must be noticed that SMPLE is compliant with IMPP guidelines for a common and
interoperable presence protocol.

An relevant initiative on mobile presence is that of Wireless Village (WV) that is now
migrated into the Open Mobile Alliance (OMA) ard it is called Instant messaging and Presence
Service (IMPS.

WV solution for presence and instant messaging is the result of the effort of three mgjor
nobile players as Nokia, Ericsson and Motorola who joint their forces in order to foster an early
PIM solution suitable for existing GSVI/GPRS nobile networks.

At the present time, there is no unique solution for presence services but rather a mumber
of possible altermatives each suited to a specific environment. In this scenario, OMA is trying to
find consensus for interoperability.

In the current market situation, the products of reference seem to be those based on
SMPLE/SP since they are somehow aligned with both 3GPP and IETF specifications. It must
be noted that OMA is gathering the heredity of both WV and Wireless Application Protocol
Forum (WAPF). And, since WAPF IM&P solution was based on SP/SIMPLE, now OMA is
very concenirated on the WV and SMPLE interoperability.

12 Instant Messaging

121 Overview

In the GSM world, SMS has been a huge suocess alowing subscribers to exchange
messages in a convenient and cost-effective way that fits into their lifestyles. Smilarly, in the IT
world, Instant Messaging has recently proved to be an extremely attractive application for both
business and private users. IMS offers the opportunity to infroduce feature-rich SP-based
Instant Messaging that provides all the benefits of the mobile and IT world in a single
application. As a flexible and adptable application. Instant Messaging offers full interworking
with legacy SMS MMS and enmil systems and will eventually replace them. Because of the
popularity of these services, Instant Messaging is an extremely important application for
subscribers and operators and one that is best supported in a SP framework

IMS Instant Messaging differs from traditional Instant Messaging in the following ways :

e Enablesreal time chat;

e [MSInstant Messaging delivers a rich set of subscriber presence states which can be updated
by a combination of automatic and user driven requests;

e IMS presence model is consistent with the one defined in SMPLE, and embraces an open
event registration model;

e Messages of all types are handled in a uniform manner, providing the subscriber with a more

consistent and satisfying user experience;

IMS Instant Messaging supports muitiple device types;

IMS based Instant Messaging supports nuiltiple address and logiry

Supports multiple messaging lists more eadily;

Any application on the network or handset can request and receive presence information via

SMPLE messages.

IMS based Instant Messaging offers all of the functionality expected of a robust carrier messaging
system such as SMIS combined with that of a reliable IP-based messaging system. Features
include:

e Full serd and receive functionality;

Store and Forward support;

Message History support;

Selective blocking and reception priorities;

One-to-Many and Marny-to-Mary messaging;

Group Lists,

Online and offline operation;

Preset messages;

Inter-carrier and Inter-platform support through gateways.

IMS Instant Messaging is more than a simple messaging application. It is a robust push solution
that can unify all message delivery models within a service provider's network. The solution
implements WAP push messages, SMIS messages, and SMPLE compatible CPIM messages.
CPIM is a MIME-based model, so inherent support is also provided for MMS- and EMSbased
functionality. WAP push, SMS, and MMS/EMS are implemented via gateways bridging into the
rich MIME-based CPIM format. Messages of al types are handled in a uniform manner,
providing the subscriber with a more consistent and satisfying user experience.

IMS Instant Messaging is fully SP/SMPLE compliant. It provides the wireless carrier with the
full event subscription model supported by SMPLE. Any application on the network or handset
can request and receive presence information via SSIMPLE messages. Any application or handset
can send and receive messages as well. This is a very powerful feature and allows many exciting
and innovative applications to be build on top of the Instant Messaging framework.

122 Instant Messaging and Presence

IMS Instant Messaging delivers a rich set of subscriber presence states. This presence
model is consistent with the one defined in SMPLE, and embraces an open event registration
model. This is an important distinction of the IMS solution.
There are two types of subscriber presence states: prainal us daes and us-gified ddis
Predefined user states are those that are pre-set in the application.
Available;
Ready to Chat;
Away.,
Invisible;
Busy;
User Defined Status.

These states are updated through a combination of automatic (client and network driven) and
user driven requests. As an exanple, the subscriber client will autormatically make the user
“Available” on device power up and “Away” when the device is powered off. Users may wish to
augment those autormatic capabilities by nmaking themselves “Busy” when they go into a meeting
or “Invisible” when they do not wish to be disturbed.

User-specified status allows users to append their own message to their current presence status.
Typical messages might be “Maidenhead Office” or “Holiday”. This combination of predefined
states and user-specified status provides a powerful capability for business and private
subscribers. Subscribers could be charged extra for joining the buddy service that alerts them to
the status of their friends and colleagues. Furthenmore, it is likely that subscribers with would feel
a strong sense of belonging to their buddly list commmmnities and thus would make more voice
calls and send more instant messages to other members.

IMS Instant Messaging has also the ability to implement a presence “aging” function for the
nobile device. Unlike wireline IM services that use key strokes or mouse movermernt to determine

5

if users are available, in a wireless ervironmert it is difficult to determine if mobile subscribers
are available to commumnicate even if their phones are on. The time from the last message
transmitted/received by the mobile device is used by the aging function to determine the user's
ability to commumicate. A contimum of presence that is supported by this model.

Signed Ony
Comnected;
Active;
Dormartt;
Discormnected,;
Signed Off.

Buddy Lists are only one of many services that may be offered The full implementation of a
SMPLE event subscription model allows ary presence subscription to be treated identically.

123 Instant Messaging Client Features

The experience of mobile subscribers differs enormoudy from that of a PC users. Their
attention is typically split across several tasks, display and input capabilities are very limited with
traditional handsets and they are almost always in a hurry. The IMS Instant Messaging solution
has all the features of desktop IM, but has the flexibility to create a user experience specifically
designed to enhance the mobile lifestyle.

The Buddy List is the “home-base” of the IM application. From it, mobile subscribers
can see at a glance the Presence/Availability of other subscribers on their Buddy List. In addition,
subscribers can always view their own Availability setting and easily change it with the toggle of
the “Status” button. This is critical because the desire of users to accept message changes quickly
and contimually. Smilarly, the most recent message is immediately viewable, as it is barmered
across the top of the screen. Since nobile users are able to glance only sporadically at their
device, uread, incoming messages are queved in threads that are indicated by bold buddy
names. The Buddy List can be sorted either by name or by whether a new message is waiting to
be read. This all puts users in control of what messages to view and when.

Arnother important feature of the IMS Instant Messaging solution is the support of
messaging to SMS users who may not be listed on a Buddy List or have an Instant Message-
enabled handset. While Buddy Lists have been proven to be a useful way to send messages, the
support of messaging to SMS users enables sending messages to anyone with an SMS-enabled
phone. The IMS Instant Messaging solution handles this by appending incoming messages from
non-buddies to the Buddy List, without Presence information, until they are read and either
replied to or deleted.

The Semens/Dynamicsoft IMS Instant Messaging solution features an innovative tool
for composing messages. The “notebuilder” message composition interface combines the
flexibility of text input with the swiftness of “preset phrases” and “ emoticons’. For exanple, the
user can entter a few words manelly, such as “ Really sorry” , and then navigate down to select the
preset phrase “I'll be late”, which will be appended to the sert message. Finally, the user can
apperd an “emoticon” in the same way and then send off a message that corweys just the right
feel, but with mininmal text entry.

Even while composing a message, the user can monitor and perform critical tasks. For
example, the most recent unread message is still “barmered” across the top of the screen since it
might contain information relevant to the message being composed. Users can also ill view and
modify their own availability staius while composing,

13 Push

131 Introduction

Push technology is going to play a relevant role in the mobile scenario since it allows for
new appealing services which foresee the distribution of information useful to mobile users like
weather forecasts, traffic news, sport news or simply advertising. Typically push based services
take advantage of user location information in order to provide the user not only with the
information he may need but also with personalized data. Other services may require to push
messages to all users who are in a given geographical area or in a given context at a specific time.

These services are provided on subscription basis since users have to explicitly give their
availability for receiving the push contents, to specify the privacy rules and to agree on the
charging model. The user should be able to stop the delivery of push services at any time.

Different business models can benefit from push technology. Either the mobile user or
the content provider or both can be charged for this type of service as required by the business
model.

It must be noticed that, with the respect to push services which are currently available on
the Intermet that are used for implementing distribution charmels, the mobile push services are
based on real pudh, i.e. the client does not poll the server for information updates. Clearly, the
use of real push isjustified by the need to save resources.

132 Push Solutions and Architectures

Since push services require esserttially the asynchronous delivery of messages, simple
push solutions can be based on existing messaging systemns like SMIS-C, MMS-C, ard IM Server
by providing a suitable interface to applications and servers. Both these messaging systems are
able to guarantee the message delivery thanks to their store and forward capability.

However, this kind of solutions are not able to offer a suitable and complete
infrastructure for push services because they lack of privacy support...

The mgjor effort for the definition of an integrated push architecture for mobile services
had been done by WAP Forum. It has identified an end to end push architecture and introduced
the concept of Push Proxy, i.e. the functional entity that is in charge of receiving push requests
from applications and to forward messages towards nobile users through the appropriate
transport service (SMIS WAP).

However, the solution proposed by WAP Forum is focused on the GPRS scenario.
Therefore, a push architecture suitable for 3G systems needs to be identified. Currently, 3GPP is
working on push services for UMTS erwirorments.

14 Games

14.1 Business Drivers for Games

Over the next few years, mobile games are seen as a source of significant increase revere
for operators. Mobile games appeal to market sectors (children, teenagers, young aduity that are
already heavy users of mobile services (for instance, voice and SV and likely to be heavy users
of Instant Messaging and Presence services, but are also price-senditive. Offering attractive new
services to this sector at the ocorrect price point has the potential to significantly increase ARPU.

The strategy is to develop a flexible infrastructure for supporting mobile games with
GPRS UMT'S ard the evolution to IMS Semens is a founder member of the Mobile Games

Interoperability Forum and runs an active conmmunity programme for developers. and work with
operators ard third party developers.

Previous generations of mobile handsets have been very limited in terms of games
available because of the redtricted ability to download new gammes to the phone. The latest
generation of phones such as the Semens S.45 begins to overcome this limitation by
infroducing a Java runtime ervironment on to the handset. N ew applications including games can
be easily downloaded to the handset. The figure shows the architecture proposed by Semens to
support games on Jva-enabled handsets through the use of an download server. Users can be
charged in a number of ways, for instance, premium rate SMS

IMS presents even greater opporturities for the infroduction of exciting and irmovative
conocepts in mobile gaming, which is the key to increasing ARPU. Ore example is the wide garme,
where players receive location-dependent game information on their terminals as they move from
place to place. Due to the engaing nature of the user experience the revenue opportunity may be
significantly enhanced.

The SP model is much more powerful and flexible one than the WAP session-based
push model, and there is a significantly increased opportunity for multi-player games. These can
be built on top of the standard facilities that IMS provides: presence, buddy lists, instant
messaging, video streaming and support for mroommerce and location-based services.

Another novel feature that can easily be incorporated into IMS terminals is a motion
detector. This trandates the movement of the handset info game commands and can be used to
convert the terminal into, for instance, a virtual wand in a fantasy wide game. All these features
increase the richness and attractiveness of the mobile games increasing the amourt of time that
users will play the game and consequently the revenue generated for the operator.

2. UMTS and IMS

21 Why UMTS?

The third generation mobile network UMT'S was bom thanks to the great success achieved
during the past decade by the following technologies the GSM (Global System for Mobile
Comnunication) network and the Intermet.

The GSM, bom initially for Westem Europe (the first telephone call with this system was
done in 1991 in a Helsinki Park), was exported in many others parts of the world (America, Asia,
etc), growing up to ore hillion users. The “Short Message Service” represents an important
source of profits for the mobile operators (a starting unexpected result when it was created). The
most important limit of GSM is the available band shortage. Due to this limitation it does not
support multimedia applications and the use of Intemet services. The cellular telephony systems
GSM grants a data transmission speed of a bare 10 Kb/s per user.

On the other hand, the Intermet spreading has been so remarkable as to outdo the fixed
switching packet traffic over the switching circuit during the year 2002. Its most important limit
is poor mobility.

These two phenomena have upset the users way to communicate and they have brought
institutions and operators to seek for new solutions. Expectations are for an enormous demand
increase of muitimedia services (already in the fixed network), together with mobility.

There is demand for a new network with the ability “to cormect anything, arywhere,

anytime”. The second-generation technology limits should be overcome so to have an efficient
use in nobile environment of tools like:

— Enmil;

— Web browsing;

— Corporate network services;
— Videooonference;

- E-commmerce;

= Multimedia applications.

The UMT'S network is not a support to Intemet, the operators want the network to be, not a
pipe to different domains, but a center of added value services. It must allow the user to be
cormected to the right thing, the right time, the right place. Only by these means the UMTSwill
retum the operators the reveres they expect.

Irtard/Irtrard Baxdod neda

E-Mail Audio-video on demand
WWW Infotainment/education
P TV and radio
E-Commerce Mhuilticast distribution

Wireless real-time connectivity
Mobility/roaming/person locatio NauvTehdag

Voice, data, MMS, IM, Presence Broadband radio

Smart antermas

Circuit/packet switched transport
Multimedia HW, SW

New compression algorithms

Fig. 2.1 Third generation convergence and integration

22 TUMTS Specification Process

The UMT'S was originated from the family of standard networks 3G named IMT-2000
(International Mobile Telecommunications 2000). Some of the requirements that nust satisfy the
IMT-2000 network are:

= To provide a worldwide covering to their users;
— To allow roaming between different networks;
= To support packet transmission (PS and circuit transmission (CS.

The 3G standard are developed by Regional Standards Development Organizations.
These organizations co-operate to the development of 3GPP (part of the family systems IMT-
2000). Their goal is to supply a set of worldwide applicable specific standards. The proposals for
17 different standards INT-200 was exhibited at SDO in 1998 11 for the Terrestrial system and
6 for the mobile satellite system (MSSg). The complete evaluation of such proposals was made at
the end of 1998, and the necessary negotiations to create agreement between the different points
of view ended in mid 1999. The I'TU accepted all the 17 proposalsas IMT-2000 standard.

The most important standard introduced are: UMTS (W-CDMA) from GSM and the
CDMA2000 from IS95 and CDMA (TD-SCDMA).

10

UMT'S offers mobile users multimedia applications thanks to a greater data transmission
speed (up to 2 Mbpg ard it settles a standard global roaming.

The UMTS was developed by the 3GPP (Third Generation Partnership Project), a join
venture between various SDO: ETS (Europe), ARB/TTC (Jpan), ANS (USA), TTA (South
Koreg and CWT'S (Ching). To obtain total consert the 3GPP introduces UMT'S in yeally

releases:

— Rel." 9 (Mgjor RAN Release, December 1999). The followng elements have been
introduced:

-

-

-

-

-

The new radio interface, WCDMA;

A new architecture for the RAN (Radio Aocess Network);

A new interface between the Core Network and the Aocess Network
The “Open Service Architecture” for services

Interworking rules among GSM and UMT'S

= Rel. 4 (Minor Release, March 2001). Are here specificated:

-

-

-

-

IP transport of Core Network protocols;
IP protocol header compression scheme (IETF);

Circuit switched domain evolution. MSC and MGW servers are now
based on the Intermet Protocol;

UTRAN access with an improved QoS
An improverment on localization services;

The introduction of MMS and WAP protocols.

= Rel. 5(Mgjor CN Release, March 2000).

-

-

The IP Multimedia Subsystem (IMS is infroduced as anew Core N etwork
elemert;

The WCDMA access scheme, MMS arnd Location services are improved.

— Rel. 6 (IMS part 2, expected at the ending of 2003). The focus of this Release is on
the IMS Services as Presence, Instant Messaging, Group Management and
Conferencing are here included.

Open isstes for future realeases are: 3GPP/3GPP2 IMS hammonization, WLAN-UMTS
interworking and Multicast/Broadcast services.

We follow now giving a brief description of the UMT'S network. An emphasis will be given to
the IMS given its importance for the work developed.

11

23 N etwork Architecture

The foundation idea of 3G architecture is to prepare a universal infrastructure able to
support present and future services. The network is plarmed so as the techmnical changes and
developments could be integrated without arny upsetting of the network or the pre-existent
services. The division between the technologies of access, transport, connection control and user
applications, allows satisfying this requirerment.

231 Network Models

The whole network architecture can be divided in subsystems according to the traffic
nature that crosses it, the supporting protocols structure and the physical elements on which are
located.

From the traffic point of view, the UMT'S network has two domains, Packet Switching
Domnmin, and Circuit Switching Domain. Based to the 3GPP TR 21.906, a domain refers to the
highest physical entities level and to the reference points that divide such entities.

From responsibilities and protocols point of view, the network can be divided in access
stratum and non-access stratum. The access stratum collects the protocols related to the User
Equipment and the network access. The nornraccess stratum holds the communication protocols
between the UE and the Core N etwork (domeains PSand CS.

From the structural point of view, the network is sub divisible in User Equipment (UE),
UMT 'S Terrestrial Radio Access N etwork (UTRAN) and Core Network (CN).

The User Equipment, that is the terminal used by the consumer, has some mandatory
functions for the interaction between the network and the terminal, such as network registration
functions, position adjournment, terminal profile identification, necessary algorithms execution
for the authentication and codification of messages The terminals to support future
developments and services, should:

— Offer APIs (Application Programming Interface);

— Offer means to download service information (parameters, script, and software),
new protoools or up to date API;

— Support Virtual Home Enwvironment using the same interface towards the user even
in roaming,

The subsystem with access radio control is called UTRAN. His chief task is to create and
to maintain the Radio Access Bearers for commumications between UE and Core Network
Thanks to the RAB the Core Network equipment have the illusion of seeing a fixed connection
with UE. They do not have the responsibility of the radio aspects. The UTRAN is sub divided in
Radio Network Subsystermns (RNS. A RNS consists of radio elements and ocontrol
correspondentts. Radio elements are Nodes B and control elements are the Radio Network
Controller (RNC). Each Node B superintends a group of cells and participates to the Radio
Resource Management (RRC) while the RNC manages and controls its donmin radio resources
(Node B linked). Node B and RNC manage also the Handover and the Macro difference (ability
to maintain cormection between terminal and network with more than one base stations).

12

The Core Network has all necessary network elements for switching and managing user's
information. Besides, it is the basal platform of all the services supplied the UMTS users. It can
depart, from a functional point of view, in the CS PS and IMS domains.

The CS domain has two fundamental network elements physically combined, they are the
serving MSC/VLR and the GMSC. The serving MSC/VLR (serving Mobile Switching
Center/Visitor Location Register), is responsible for the activities management about cormection
and circuit switching, for mobility management (position and registration up to date) and
cormection security. The GMSC (Gateway Mobile Switching Center), attends to the on and off
cormections for and from other networks. From the point of view of cormection management,
the GMSC routes toward serving MSC/VLR where the user is found. From the point of view of
nmobility management, the GMSC begins looking for position information, in order to find the
correct serving MSC/VLR to st the call.

The PS domain has two network elements: the serving GPRS Support Node (SGSN) and
the Gateway GPRS Support Node (GGSN). The SGSN nodes support packet communication
towards the access network. They are responsible for the mobility management, the routing area
adjourmment, the position regjstration and the packet commumnication security. The GGSN nodes
nuintain the cormection with other packet switching networks like Intermet. The transport
network that keeps the nodes GSN cormected is the IP backbone and can be thought a true
private Intranet. For this reason the IP backbore is separated from other networks through a
firewall. The domain PSmust also contain a DN'S (Donain Name Server) for routing.

There are elements in the network whose function is not traffic transportation. These are:
HLR (Home Location Register), AuC (Authentication Center) and EIR (Equipment Identity
Register). These apparatuses contain information about addressing and identification related to
the CS and PS donmains and they are necessary for mobility management procedures. The VLR
(Visitor Location Register) brings up to date position, security, etc.

24 IMS
The IP Multimedia Subsystemn is based on the IP protocol. This new Core Network
element is proposes to offer both traditional telephornys as well as packet switched services over a
single converged packet based network The mgjor shift in the UMT'S architecture has been done
with the infroduction of Release 5. The wireless industry has well realized the advantages due to a
converged network. Somme of the reasons and berefits of a corwverged wireless network are:

— Lower maintenance cost: A single conwverged network based on IP results in
reduced maintenance and operations costs. Again the management of the IP
networking compornents is easier compared to telephorny components due to open
standard management platforms. The operators can manage the corverged network
with a smaller operational staff. Moreover, the operators need not irvest in
developing expertise in multiple technologies since the corverged network will be
based on one signaling and bearer network.

— Enhanced Services: The integration of voice and data networks offers
opportunities for deploying enhanced nmuiltimedia services. Almost every service
other than telephony services is available on the Intermet today. The combination of
Intermet and telephony services opens a world of new reverue opportunities for
service providers.

13

— Rapid Service Deployment: Development of a conwverged network based on a
single standard allows for rapid deployment of new services. The configuration and
co-ordination required to introduce new services is reduced due to the integrated
nmanagement of wireless networks.

241 IMS Architecture

The components that will be presented are the Call Session Control Function (CSCF)
comporents and the Media Gateway (MGW)/Media Gateway Comntrol Function (MGCF)
network components. UMT'S Release 5 allows mobiles operating in packet mode to establish
voice calls using SP as the signaling protocol.

— Call Session Control Functions: The first key elements are the Call Session
Control Functions (CSCF). The CSCF has taken the mgjority of the MSC
functionality in the IMS architecture. The CSCF is analogous to the SP server in
the IETF architecture 3. Its function is to process signaling messages for
controlling the user's multimedia session, to trandate addresses and to manage the
user's profile. The existing packet switched core network is used to support the
bearer path for the nuitimedia session and the CSCFs are used to establish the
sessions and perform features. The service control protocols are compliant with the
Intermet Engineering Task Force (IETF) based protoools. The protoool that is used
for the mgjority of the signaling is SP.The CSCF can play mainly three roles:

& Proxy-CSCF: the Proxy Call Session Control Function (P-CSCF) is the
mobiles first point of contact in the visited IMS network. The others only
exist in the home network The P-CSCF has two main functions. Its
primary function is to be the Quality of Service Policy Enforcement Point
within the visited IMS network. Its second responsibility is to provide the
local control for emergency servicesThe P-CSCF forwards the SP
registration messages and session establishment messages to the home
network The Proxy-CSCF is analogous to the Proxy Server in the SP
architecture.

& Interrogating-CSCF: The Interrogating Call Session Control Function
(I-CSCF) is the first point of contract within the home network from a
visited network. Its main job is to query the HSS and find the location of
the Serving CSCF. This is an optional node in the IMS architecture. It
could be configured so that the P-CSCF could contact the SCSCF
directly. The I-CSCF has a number of functions. It performs load
balancing between the S-CSCFs with the support of the HSS The I-CSCF
hides the specific configuration of the home network form other network
operators by providing the single point of entry into the network. The I-
CCF can aso perform some forms of hilling, If the I-CSCF is the
gateway into the home network;, it must support the firewall function.

& Serving-CSCF: The Serving Call Session Control Function (SCCF) is
the node that performs the session management for the IMS network
There can be several SCCFs in the network. They can be added as
needed based on the capabilities of the nodes or the capacity requirerments
of the network The S-CSCF in the home network is responsible for all
session control, but it could forward the specific request to a P-CSCF in
the visited network based on the requirements of the request. For

14

example, the visited network will be in a better position to support the
local dialing plan or some other local service that the user may be
interested in. The S\CSCF may be chosen differently based on the services
requested or the capabilities of the mobile. One key advantage of this
architecture is that the home network provides the service features. This
means that the mobile is not redtricted to the capabilities of the visited
network as is seen in the current wireless network (i.e. if an MSC does not
support a feature that you have subscribed to, you will not be able to use
that feature.) This ability to allow the user to always be able to get access
to their subscribed features is referred to as Virtual Home Environment

(VHE)

& Home Subscriber Server: As in the legacy mobile network, there is still a
need for a centralized subscriber database. The Home Location Regjster
(HLR) has evolved into the Home Subscriber Server (HSS) The HSS
interfaces with the I-CSCF and the S-\CSCF to provide information about
the location of the subscriber and the subscriber's subscription
information. The HSS uses the only protocol that is not IETF based, the
Cx interface 4 . The HSS and the CSCF commmumnicate via the new Cx
interface. The protocol on the Cx interface is not an IETF protoool, but it
isIP based.

— Media Gateway and Media Gateway Control Function: In an ernwvironment
where all of the sessions are between I[P capable end user devices, there would be
1o need for anything other than the CSCF’s and the HSS. In redlity, there will be a
very long transition period to completely eliminate the legacy PSI'N and mobile
networks. The IMS supports several nodes for interworking with legacy networks.
These are the Media Gateway (MGW), the Media Gateway Control Function
(MGCEF), and the Transport Sgnaling Gateway (T-SGW.)

& Media Gateway Control Function: The MGCF controls one or more
MGW’s, which allows for more scalability in the network The MGCF
nmanages the connection between the PSI'N bearer (the trunk) and the IP
stream. For simplicity the MGCF could be collocated with the MGW. The
MGCEF corwerts SP messages into either Megaco or ISUP messages.

& Media Gateway: If the MGCF is the brains of the operation then the
Media Gateway (MGW) is the brawm. It is the workhorse that does the
processing of the media bits between end users. Its primary function is to
corvert media from one format to another. In UMTS this will
predominantly be between Pulse Code Modulation (PCM) in the PSI'N
and an IP based vocoder format. The MGW is likely to be a real-time
hardware based platform. It is critical that it processes the bits as quickly
as possble so that delay is mot added to the transmission of the
information.

& Transport Signaling Gateway: The PSI'N currently only understands
SS7 and there is no incentive for it to provide support for anything other
than SS7. SS7 has limitations and is not as flexible as IP. To prevent the
need for the MGCF to support SS7 the Transport Signaling Gateway (T-
SGW) was created. Its job is to corwert SS7 to IP. The T-SGW corwerts
the lower layers of SS7 into IP.

15

242 Distribution of CS functionality
In this paragraph we look at the at the essential functions of processing a call in the
circuit switched world and see where these functions have moved to in the IMS network.

— Call Control and Feature Processing: In the circuit switched network the MSC
did the call control to process a call. This function has been moved into the CSCF.

— Billing: At the end of the call the MSC must perform the billing function by
generating a billing record. This function has been moved to the SCSCF and the P-
CSCF. The reason it is in both is so that the home network can bill the subscriber
ard the visited network can bill the home network for the subscriber’s use of their
TeSOUICES.

— Subscriber Profile Management: The MSC was responsible for keeping a local
copy of thesubscriber’s profile that would be used to assist in processing a call. This
function is now in the SCSCF.

— Mobility Management and Authentication: The MSC performed mobility
management to know the location of the mobile as it moves around the network
Since the mobile is communicating over an air interface, which carmot be protected,
the MSC must also authenticate the identity of the user to ensure that it is not
fraudulent. In previous releases of UMT'S these functions were performed in the
circuit switched network and in the packet switched network (i.e. this was
performed in the MSC and SGSN separately.) It is redundant for both of these
functions to be in both networks. In the IMSit will only be performed in the packet
switched network (i.e. the SGSN)

243 Services Architecture
The IMS services architecture allows deployment of new services by operators and 3 rd
party service providers. This provides subscribes a wide choice of services. The SCSCF is the
anchor point for delivering new services since it manages the SP sessions. However, services can
be developed and deployed in a distributed architecture. Multiple service platforms may be used
to deploy wide variety of services. The IMS defines three different was of delivering services:

— Native SIP Services: In the last few years, a wide variety of technologies have
been developed by various organizations for developing SP services. They include
SP sevlets, Call Processing Language (CPL) script, SP Common Gateway
Interface (CGI) and Jawa APIs for Integrated Networks (JAIN). One or more SP
application servers may be used to deploy services using these technologies.

— Legacy IN services: While new and inmovative services are required, the legacy
telephorny services camot be ignored. The release "99 networks use CAMEL
(Customized Applications for Mobile Enhanced Logic) Service Erwironment for
deploying intelligent networking services such as pre-paid service and toll-free

service.

— 3rd party services: UMT'S has defined Open Services Access (OSA) to allow 3rd
party service providers to offer services through UMTS network The OSA offersa
secure API for 3 rd party service providers to access UMT'S networks. Therefore,
subscribes are not restricted to the services offered by the operators.

16

The SCCF uses the Cx interface to retrieve subscriber profile from the HSS The S-CSCF
interacts with different service platforms through IMS Services Control (ISC) interface that is
based on SP and its extensions. However, the OSA and CAMEL envirormments do not support
ISC interface. The OSA Service Capability Server (SCS performs mediation between the ISC and
the OA API. The IM-SF performs mediation between the ISC and CAMEL Application
Protocol (CAP).

244 Identification of Users

There are various identities that may be associated with a user of P multimedia services.
These may be:

¢ Private User Identity: Every IM CN subsystem user shall have a private user identity. The
private identity is assigned by the home network operator, and used, for example, for
Regjstration, Authorisation, Administration, and Accounting purposes. This identity shall
take the form of a Network Acocess Identifier (NAI) as defined in RFC 2486. Its properties
are:

— The Private User Identity is not used for routing of SP messages.

— The Private User Identity is contained in all Registration requests, (including Re-
registration and De-regjstration requesty passed from the UE to the home
network.

— The Private User Identity is a unique global identity defined by the Home Network
Operator, which may be used within the home network to uniquely identify the
user from a network perspective.

— The Private User Identity is permanently allocated to a user (it is not a dynamic
identity), and is valid for the duration of the user's subscription with the home
network.

— The Private User Identity is used to identify the user's information (for example
authentication information) stored within the HSS (for use for example during
Registration).

— The Private User Identity identifies the subscription (e.g. IM service capability) not
the user.

— The S.CSCF needs to obtain and store the Private User Identity upon regjstration
ard unregjstered termination.

245 Call Flows

The flux of call-setup signaling moves through the UTRAN from the UE towards the
SGSN/GGSN, and is routed then to the CSCF and finally to the destination network (it may be
another IMS network, or MGCF/MGW or another IP networX). It is important to distinguish
the elements that route messages from those that process them. When a UE sends a request to
aocess a service, this is sent to a S'.CSCF (through the P-CSCF and I-CSCF nodeg to ask the
service. The SGSN's and the GGSN's have only routing tasks, they don't look the content of a
message but check only the IP address so to be able to route it to destination.

17

The flux of media and data moves from the UE through SGSN's and GGSN's towards
the destination network. This flux doesi’t cross the CSCF network then. The IMS philosophy is

to keep signaling separated from user’s information.

246 How it works

The UE, 0 to be able to conmmumicate with the IMS must set up a SP session. Lets now
take alook to those that are the key steps that take to the setup of a session:

e System Acquisition: the first step is to power on the mobile and lock on to the UMTS
system. Once the appropriate cell is selected, the UMTS nobile is ready to conmmunicate
signaling messages required to establish a data session.

¢ Data Connection Setup: once the system has been acquired, the next step is to establish the
data connection or “pipe” to the SP and other services. The UE does not know the IP
address of the Proxy CSCF at this point to perform a SP registration. The data cormection is
conpleted in a two step process using GPRS Attach and Packet Data Protocol (PDP)

Context Activation message sequences.

— GPRS Attach: the GPRS Attach process, as the corresponding procedure
performed in the circuit-switched world (IMS Attach), informs the network about
the presence of the mobile terminal. Once registered, the network has knowledge of
the location of the UE at a Routing Arealevel. The UMTS UE serds
the Attach message to the Serving GPRS Support Node (SGSN), which includes
the UE’s Intermational Mobile Subscriber Idertifier (IMS). The SGSN uses the
IMS to serd a request to the UE's Home Location Register (HLR) for the
uthentication parameters to help authenticate the subscriber. The HLR provides
authentication information to the SGSN, enabling the SGSN to verify the veracity
of the subscriber's IMS. The successful completion of authentication procedure
triggers the SGSN to send a location update (which provides the UMTS UE'’s
IMS) to the HLR and this triggers the subscriber's profile to be downloaded to the
SGSN. This includes information such as the subscribed services, the QoS profile,
ary static IP addresses allocated and so on. The SGSN conpletes the Attach
procedure by sending an Attach Complete message to the UE. With this step the
UMT'S network knows the location of the user.

— PDP Context Activation: Once a UE is attached to an SGSN, it must activate a
PDP address (in this case, an IP address when it wishes to begin a packet data
communication, including SP services. Activating a PDP address sets up an
association between the UE’s currentt SGSN and the Gateway GPRS Support Node
(GGSN) that anchors the PDP address. A record is kept regarding the associations
made between the GGSN and SGSN . This record is known as a PDP context. This
second and final step is required to establish the data cormection or “pipe” to the
Intermet.. The activation of a PDP context activates an IP address for the UE; the
UE may now exchange traffic using that [P address. By these means the path
necessary to transport the SP signaling to the P-CSCF through the GGSN is set.
At this point the the UE comes to know the identity of the P-CSCF.

18

__UE | [_sGsN_ | [_casN_ |

1. Activate PDP Context Request
1. Create PDP Context»Request

2. Get IP address(es)
of P-CSCF(s)

% Create PDP Context Response

43. Activate PDP Context Accept

Fig. 22 P-CSCF discovery using PDP Context Activation signalling

e Service Registration: Before establishing an IP Multimedia session, the UE needs to
perform the Service registration operation to let the IMS network know the location of the
UE.

— The reasons to perform registration are:

& During service registration, the HSS acquires information on the current
position of the user and follows updating its profile accordingly.

& An authorization to be registered is necessary. The HSS checks user's
authorization basing on its profile and on operator’s limitations.

& The UE needs a Serving-CSCF in its home network in order to obtain
IMS services. During service registration, the home network sclects a
suitable Serving-CSCF for the UE and the subscriber profile is sent to the
S-CSCF.

— The flux of messages that starts with the sending of a REGISTER from the UE is
asfollows

& To start the Service registration process, the UE sends the SP Regjster
message to the Proxy-CSCF. This message includes the subscriber identity
and home networks dormain name.

& Upon receipt of the Regjister message, the P-CSCF examines the “home
donmin name” (e.g. ims_sprint.com) to discover the entry point to the
home network (i.e. the I-CSCF) with help from DNS The proxy sends
the Register message to the I-CSCF with the P-CSCF's name, subscriber
identity, and visited network contact name. The main job of I-CSCF is to
query the HSS and find the location of the Serving CSCF. When the I-
CSCF receives the Register message from the proxy, it examines the
subscriber idertity and the home domain name, and uses DNS to
determine address of the HSS

& The I-CSCF sends a UMT'S proprietary message, Cx-Query 7, to the HSS
with the subscriber idertity, the home domain name, and the visited

19

dommain name. The HSS checks whether the user is registered already. The
HSS indicates whether the user is allowed to register in that visited
network according to the wser subscripion and — operator
limitations/restrictions (if ary). The Cx-Query Response is sent from the
HSSto the I-CSCF.

The I-CSCF sends the subscriber identity via the UMT'S Cx-Select-Pul
message to the HSS to request the information related to the required S-
CSCF capabilities. This information is needed for selecting a S.CSCF. The
HSS sends the required S-CSCF capabilities to the [-CSCF via the Cx-

Select-Pull Response message..

The I-CSCF, using the name of the SCSCF, determines the address of the
S-CCF through a name-address resolution mechanism. The [-CSCF also
determines the name of a suitable home network contact point, possibly
based on information received from the HSS The home network contact
point may either be the SCSCF itself, or a suitable I-CSCF in case
network configuration hiding is desired. If an I-CSCF is chosen as the
home network contact point, it may be distinct from the I-CSCF that
appears in this service regjstration flow. I-CSCF then sends the Register
message to the selected SCSCF. The flow includes the P-CSCF's nane,
the subscriber’s iderttity, the visited network contact name, and the home
network contact point (if needed). The home network contact point will
be used by the P-CSCF to forward session initiation signaling to the home
network.

The SCSCF sends a Cx-Put message with the subscriber’s identity and the
S-CSCF name to the HSS The HSS stores the S‘CSCF nane for that
subscriber. The HSS sends the Cx-Put Response to the SCSCF to
acknowledge the sending of the Cx-Put.

On receipt of the Cx-Put Response message, the SCSCF sends the Cx-
Pull message with the subscriber identity to the HSS in order to be able to
download the relevant information from the subscriber profile to the S-
CCF. The SCSCF stores the P-CSCF's name for use in session
termination..

In the 200 OK message, the SCCSCF sends the serving network contact
information to the I-CSCF, who forwards it to the P-CSCF. The P-CSCF
stores the information, and sends the 200 OK message to the UE. The I-
CSCF releases all registration information after sending 200 OK.

20

Visited Network Home Network
\ | | \
UE ‘ ‘ P-CSCF ‘ ‘ I-CSCF ‘ ‘ HSS ‘ ‘ S-CSCF

1. Register

2. Register

3. Cx-Query

4. Cx-Query Resp

5. Cx-Select-pull

»
|

‘6. Cx-Select-pull Resp

-

7. Register

\4

8. Cx-put

9. Cx-put Resp

10. Cx-Pull

11. Cx-Pull Resp

12. Service Control
13.200 OK

14.2 K <
15.200 OK < 0o -

Pl
|

Fig. 2.3 Exchange of messages in the registration process

e Session Setup Procedures: In the I[P Multimedia Subsystem specifications, an end-to-end
session flow condists of three types of procedures: mobile origination, S.CSCF-to-S-CSCF,
and mobile termination.

— Mobile origination: in the example we assume that the UE is located in a visited-
network when initiating the session:

& The subscriber of the IMS nobile has either dialed digits or used a GUI
on the nobile to determine the person that he wants to call. The nobile
sends the SP INVITE request to the P-CSCF. The INVITE message
contains three key pieces of information. The first is the called party in the
To header. The second key piece of information is the proposed SDP.
This SDP may represent one or more media types for a muiti-media
session. The last piece of information is the From header that contains the

calling party.

& The P-CSCF remembers (from the registration procedure) the next hop
CSCF for this mobile. This next hop is either the SCSCF in the home
network that is serving the visiting mobile, or an I-CSCF within the home
network that is performing the configuration hiding function for the
home network operator. This scenario assumes that the home network
operator wants to keep its network configuration hidden, so the
name/address of an [-CSCF in the home network was provided during

21

service registration, and the INVITE request is forwarded through this I-
CSCF to the SCCSCF. The P-CSCF will look at the SDP portion of the
SP message and examine the proposed media types that were proposed
by the calling party in establishing a session. The P-CSCF has the option
at this point to remove some of the proposed media types based on the
types of sessions the visited network wants to support.

The SCSCF validates the service profile, and performs any origination
service control required for this subscriber. This includes authorization
of the requested SDP based on the user' s subscription for nuitinedia
SeIVices. .

The S-CSCF also determines the location of the called party based on the
information in the To header. As stated before, this could be to another
IMS system, to a SP capable device (a User Agent Client or a SP proxy
server) or to a Media Gateway Controller network to go to the PSI'N.
Which network is determined by using DN'S to trandate the address in the
To header to an IP address. SCSCF forwards the INVITE request to the
destination. It is not clear from the standards if the SCCSCF is a stateless
or stateful proxy. It seems logical to assume that it is a stateful proxy since
the S.CSCF will support the hilling function for the call session. By that
same point, the P-CSCF is probably a stateful proxy as well.

The called party respornds with a provisional response that will include a
SDP in the message body. This is the called party's suggestion on the
media type.

The S-CSCF forwards the SDP information to P-CSCF through I-CSCF.

The P-CSCF again looks at the SDP field and removes media types that it
does not want to support. The P-CSCF determines the type of resources

that are required based on the media type that is requested.

The P-CSCF then forwards the SDP information to the originating
endpoirit (i.e. the mobile).

The mobile decides the final set of media streams for this session, and
sends the Final SDP to P-CSCF. The P-CSCF will then perform the
Policy Control Function and determine the resource requirerments. There
are a number of options that can happen at this point. The P-CSCF can
send the policy information using a protocol like Common Open Policy
System (COPSS8 to the GGSN. The P-CSCF ocould also just store this
information in a database. The GGSN will send a request to the P-CSCF

for “ permission” to setup the requested resources.

The P-CSCF sends the Final SDP message to the SCSCF (via the [-CSCF
if necessary’)

The SCSCF sends the Final SDP message to the called party.

22

After determining the final media streams, the nobile initiates the
reservation procedures for the resources needed for this session. The
resource reservation takes the form of a secondary PDP context activation
or a PDP oontext modification. At this point the mobile will request to
take the curent bearer path (that was used to send the signaling

to a bearer that will support the media stream and the
sgmaling. The GGSN will receive this request and either have the
permission to establish (that was sent by the P-CSCF earlier) or the
GGSN will send a request (via COPS to the P-CSCF for permission to
change the cormection.

When the resource reservation is completed, the mobile sends the
COMET mnessage (to show that the resource reservation has been

successful) to the terminating endpoint, via the signaling path established
by the INVITE message.

The COMET message is serit to the 1 SCSCF through the P-CSCF.

The S.CSCF forwards the message to the UE.

The destination party may optionally perform alerting. If so, it signals this
to the originating party by a provisional response indicating ringing. This
message goes through SCSCF, I-CSCF, and P-CCF to amive at the
originating mobile.

When the destination party answers, the tenminating endpoint sendsa SP
200-OK final response S-CSCF.

The SCSCF performs whatever service control is appropriate for the
completed session setup.

The S'CSCF sendsa SP 200 OK response to the P-CSCF through the I-
CCF.

The P-CSCF informs that the reserved resources for this session should
now be available.

The P-CCF sends SP 200 OK response to the session originator.
The originating mobile starts the media flow(g for this session.

The nobile respords to the 200 OK with a SP ACK message, which
goes through P-CSCF and S-CSCF. SCSCF forwards the final ACK

message to the terminating endpoint.

23

rk ‘ ‘

Visited Network Originating Home Netwo Terminating
P 1 Network
UE P-CSCF -GSCF S-CSCF
i (THIG)
Lo
1. Invite (Initial SDP_Offer) }
\
- e
} 2a. Invite (Initial SDP Of‘?er) R }
I ! I
' | 2b1. Invite (Initial SDP Qffer) 1
| 1 2b2. Invite (Initial SQP Offer)l
. ‘Eiiiiiiiiiii ,,,,,,, \
|
} 3. Service Control
\
\
} 4. Invite (Initial SQP Offer)
\
D b ‘53 Offer Response
| |_pa. Offer Response | |
I f |
| | 1. Offer Response | |
B e i
7. Authorize QoS |
Resources }
_8. Offer Response }
< \
9. Response Conf (Qpt SDP) }
|
10. Resource }
Reservation R 5
} 11. Response Conf (Opt SDP) o
T ——— |-————————————-112. Response Cogf (Opt SDP)
\
R ettt I-13. Conf Ack (Opt SDP)
I'| 14. Conf Ack (Opt SDP) |
o o _—__—_—__| L
15. Conf Ack (Opt SDP) i
16. Reservation Confy —————————————— S u
17. Reservation Conf | ol
e —— —————————————118. Reservation Gonf
|
[T—— e T -19. Reservation Conf
I 20. Reservation Conf | |
1. Reservation Conf{t—————————————— —————— H
\"***T*T*********} ************* fg-fli’lgi’lg ,,,,,
! 42,3;BE‘9'DQ ,,,,,,,] !
@4 Ringing R T E RREEET g
S Homm oo L26. 200 OK
R R — &
| 25. Alert User } || 72000k e ————— |
777777777777 ‘ 28. Approval of QoS ‘ !
Commit \
9. 200 OK }
|
|
30. Start Media }
\
31. ACK J o S -
32. ACK } i
o ————————————=1B3. ACK
| >
|
|

Fig. 2.4 Session setup started from amobile located in a visited network

— Mobile termination is quite similar to the mobile origination except that the
Signaling is in the reverse direction. This scenario assumes that the mobile islocated
in a visited network The use of the I-CSCF is, again, optional. If the originating
network operator wants to keep the network configuration private, then the S-

24

CSCF will choose an I-CSCF, who will perform firewall function and pass messages
to the P-Destinations CSCF.

& INVITE: The originating party sends a SP INVITE message through
the network to the destination nobile.

& SDP negotiation: The two end parties negotiate the media characteristics
(e.g. number of media flows, codecs, etc.) for this session and make a
decision on the media streams they will support for this session.

& Resource Reservation: The network reserves the necessary resources for
supporting this session, after the media characteristics for this session
have been agreed on.

& Session setup confirmation: Once resource reservation is completed
successfully, the terminating mobile sends a SP 200 OK final response
and the originating point replies with a SP ACK message to confinm the
session setup.

% Session in progress: Once the P-CSCF approves that the reserved
resources can be used, the mobile starts the media flow. After the session
setup is confinmed, the session is in progress.

PSI'N /Legacy Networks Interaction: The IMS networks need to interact with PSTN so
thatlMS users can establish services to PSI'N users. The interworking between IMS networks
and PSI'N /legacy networks occur at two levels: Ore is the user plane level and the other is
the signaling plare level. In the user plane, interworking elements are required to corwvert IP
based media streams on the IMS side to PCM based media streams on the PSIN side. The
Media Gateway (MGW) elemmert is responsible for this function. The Media Gateway Control
Function (MGCF) through the Megaco protocol confrols the MGW elements. On the
signaling plane level, the SP signaling needs to be converted to legacy signaling such as
ISDN Signaling User Part (ISUP). The MGCEF is responsible for converting SP signaling to

legacy signaling such as ISUP. The MGCEF is responsible for transporting ISUP signaling
messages to a Trunking Signaling Gateway (T-SGW) over IP transport bearer. The T-SGW
transports these ISUP messages over the SS7 bearer to either the PST'N or the legacy wireless
networks. Please note that MGCF and T-SGW are logical functions. These functions may be
implemented in one physical box.

— The UE initiates the session by sending a SP INVITE request, which includes the
initial SDP. This request is forwarded all the way to the MGCF.

— The MGCF initiates a Megaco interaction to pick an outgoing charmel and
determine the media capabilities (e.g. encoding format) of the MGW.

— The UE and the MGCF negotiate the media characteristics (e.g. number of media
flows, codecs, etc.) for this session.

25

After determining the final set of media streams for this sesdon, the UE initiates
the reservation procedures for the resources needed for this session. Once the
resources have been suocessfully reserved, the UE informs the MGCF.

The MGCF conmumicates with the PSIN through the T-SGW to set up trunks for
this session. The MGCP uses the legacy protocol such as ISUP to setup trunks.

MGCEF derts the UE that the destination party has been contacted.
The PSI'N informs the MGCF that the destination party has answered.

MGCF initiates a Megaco interaction to make the cormection in the MGW bi-
directional.

MGCF sends a SP 200 OK final response and the originating UE replies with a
SP ACK message to confirm the session setup.

The UE darts the media flow for this session after it receives the SP 200 OK
response.

Originating] Terminating Home Network Gateway |
Network

MGCF MGW PSTN

1. Invite (Initial SDP Offer)|

2. H.248 interaction to create
the connection

_3. Offer Response

4. Response Conf (Opt SDP)

5. H.248 interaction to modify
the connection to reserve
resources

_B. Conf Ack (Opt SDP) | ‘

«

7. Reserve Resources ‘

8. Reservation Conf N
9. 1AM o
_10. Reservation Conf g
< dAcm o
J2PRingng |
_13. ANM
14. H.248 interaction to start
the media flow
_15. 200 OK
«
16. ACK N

Fig. 2.5 Signaling call flow towards a PSTN user

26

3. Reference Scenario

31 Exploit Project

Mobile Network Operators are concemed with the risks that may come with the UMST.
The need of muiltiple and heterogeneous technologies (PS and CS domaing increase costs and
infroduces significant interworking. The infroduction of the PS domain can lead to a partial loss
of control over applications and revenue streams. This may result in aloss of revenue and profit
potential and in being relegated to an “access provider” role.

The Exploit project wants to demonstrate the advantages of the adoption of an IMS
platform in this scenario. The advantages are seen in tenms of:
e New services rapid development and deployment;
e Seamless to integration of existing services;
e Usage of a 3GPP standard platform.
The effort of the project is the definition, design and development of new services that may be
tested on the IMS platform.

32 IMSes Platform

The Semens IMS@ vantage is part of the Semens IP-nuitimedia service architecture. It
provides MN Os (Mobile N etwork Operators) with the facility to offer voice-enabled muiltimedia
services with packet-oriented networks. IMS@ vantage is an access independent solution that
works together with a packet-oriented access network, whether it is a UMT'S Release 4 packet-
switched domain, a GPRS network, a GSM network using enhanced data rates for GSM
evolution (EDGE) or WLAN. This allows operators to effectively use the IMS@ vantage core
infrastructure as their control platform not only for UMT'S radio access, but also for EDGE,
GPRS and license-free hot spot radio technologies such as WLAN acoess.

It is designed in such a way that it can also be used complementary to TDM networks
suich as global system for mobile commumication (GSM) and circuit-switched UMTS
IMS@ vantage can be eadily introduced in parallel to such existing voice networks, and be used
specially for muitimedia applications or higher-bandwidth applications.

321 Platform for a Variety of N etwork Services
IMS@vantage provides five different types of services for multimedia service
provisioning:
e Basic network services: registration (login as subscribed end-user), authentication and
service authori-zation, mobile call control, and application triggering;
¢ Interworking to legacy networks: interworking to GSM and public telephony networks;
e Enhanced network services (service enablers): conferencing, presence information,
payment, location information and click-to-call possibilities;
e Enhanced user services and applications: applications, which bundle enhanced network
services to create new applications for mobile and fixed networks;
¢ Operator services: network element management and subscriber administration.

27

322 IMSe vantage Experimental System (ES) Architecture
IMS@ vantage is the infrastructure needed to run new data and muiltimedia services. It
consists of the IMS@ vantage control network, the WLAN access network and software on the
end-user devices. It provides the possibility to integrate new services and appli-cations developed
by the mobile network operator or those provided for the MNO by ex-termal application service
providers (ASP). The following figure illustrates the architecture of the IMS@ vantage ES which
is alaboratory test-system.

lil

{l:' HD OpErator's ;

cE - | SGE5H .. lak P infrastruc’tur_g,ﬂ' multimedia home subscriber
.' '; @EEN | T " cantraier EELTS

o o ppicatior
wer el

IF router
OMS/OHCF

IMS@vantageES
contred netwurk >

:J'] WL AN access d dj “;- i

m'suallzzhnn o
networh IMS-ES clients

IS ES chents

Fig. 3.1 The architecture of the IMS@ vantage Experimental System (ES

¢ Access N etworks: the IMS@ vantage ES allows acoess via:
« GPRS
& WLAN.
GPRS access can be enabled via the MNO'’s existing second generation (2G) network The
infrastructure, ustelly condists of the following elements:
— GSM base stations;
— Serving GPRS support node (SGSN);
— Gateway GPRS support node (GGSN).
The elements contained in the WLAN access network are:
— The base stations (B, also called WLAN access points, which enable the end-user
devices with their WLAN access cards to cormect to the WLAN access network;
— The switch that cormects the WLAN access network with the router and the IMS
oorntrol network
— Notebooks with WLAN access cards;
— Handhelds (mobile phones and personal digital assistents, PDA) with WLAN or
GPRS access facilities.

28

it
1 L

Fig. 32 WLAN Access Point

Control N etwork: the IMS@ vantage ES control network is the core of the IMS@ vantage
ES It condists of the following elements:
— The nuitimedia controller, which contains the following functions in a modular
way:
& the proxy call state control function (P-CSCF);
& the interrogating call state control function (I-CSCF);
& the serving call state control function (S-CSCF).
— The home subscriber service (HSS server;
The application server;
— The operation, administration and maintenance (OAM) server with the rack
oconsole;
— The router, which apart from routing contains the following functions:
& domuain name system (DNS);
& Tnetwork time protocol (NTP);
& dynamic host configuration protocol (DHCP).

J

323 Element Description
The description of the IMS@ vantage Experimental System functional elements follows:

Multimedia Controller: one of the key elements of the IMS@ vantage ES control network is
the nmuitimedia controller. The muitimedia controller is responsble for call signaling. All
three roles of a call state control function (CSCF), defined by the 3rd Generation Partnership
Project (3GPP), are realized in the muitimedia controller in a modular way.
— Proxy CSCF (P-CSCF): it is the first point of contact for an end-user device when
the IMS is contacted from inside the same administrative domain as the IMS The
P-CXCF:
& Forwards SP messages;
& Trandates IDs other than SP unified resource identifiers (URI) into SP
URIs.
In IMS@ vantage ES the address of the P-CSCF is pre-configured on the end-user
device.
— Interrogating CSCF (I-CSCF): it is the first contact point, when the IMS is
contacted by an IMS of another administrative domain. The I-CSCF:
& Forwards SP messages;
& Assigns an SCCF (e.g., during regjstration);
& Canbe configured to conceal the intermal network configuration, capacity
ard topol-ogy.
29

— Serving CSCF (S-CSCF): it perforns session control and service triggering, it:
& Actsasregistrar (aserver that acoepts regjister requests);
& Forwards SP messages;
& Interacts with the application server;
& Authenticates according to HSS data.

* Home Subscriber Service (HSS) Server: the home subscriber service (HSS is a database
that contains subscriber-related information. This database includes data for:
= Identification;
— Authorized services;
— Subscribed services.
On the delivery of IMS@ vantage ES the data for 50 subscribers is configured in the HSS
(standard configurationy.

® Operation, Administration and Maintenance (OAM) Server: OAM functions are HTTP-
based and can therefore be performed by the administrator from the rack console or
renotely from any workstation. The graphical user interface (GUI) greatly simplifies the
OAM activities associated with the different network elements.
¢ Application Server: the IMS@vantage ES confrol network includes a multimedia
application server over which applications are made available. Enhanced network services,
such as call for-warding and network-initiated calls are realized with the help of this server.
The application server is a SP application server cormected via SP to the nmultimedia
controller and offering various application programming interfaces (API) for service creation.
Three APIs are available:
= Java programming language (JPL) API;
— Call processing language (CPL) API;
— Hypertext transport protocol (HTTP) API.

¢ Dynamic Host Configuration Protocol (DHCP): donwin name system (DNS for name
resolution, network time protocol (NTP) for time synchronization, and dynamic host
configuration protocol (DHCP) for dynamic IP-address assignment are conmmon
elements/protocols of IP networks and for this reason are not described here in more detail.

33 Client Description

For development and testing purposes, two PDAs have been used: Compaq’'s iPAQ 3630
Fyjitsr-Seemens Pocket Loox (the target PDA for the IMS cliert).

The iPaq is powered by a 206 MHz Intel StongARM 32-bit processor, 32 MB of RAM
and 16 of ROM. The expansion-pack system allows to add functionality to suit particular needs.
This expansion system has been used to achieve WLAN ocommectivity being able to attach a
PCMCIA card dot. The problem of offering an integrated connectivity has been solved with later
models. The color 240x320 TFT screen produces 4,096 oolors (12 bit resolution per pixel), it is
possible to view the screen from many angles. The Compaq iPAQ includes a microphone and a
speaker as well as an audio-in jack. It features an infrared port for wireless data trander. It
cormnects to either USB or serial ports and allows to input data in your own handwriting, by soft
keyboard, by voice recorder, or through inking.

The Pocket Loox features most of above properties and has some further ones. It is
powered by a faster 400 MHz processor based on Intel's Xscale Microarchitecture, 64 MB of

30

RAM and 32 of ROM. It offers integrated Bluetooth connectivity and features of an integrated
Compeact Flash that was used to cormect to the WLAN network The touchscreen display is 240
by 320 pixels wide with 655636 colors.

Both of these PDAs permit pc comnectivity via USB and serial interfaces, using
Microsoft's ActiveSync software and both of them are powered with the Pocket Pc 2002 OS

Fig. 3.3 PDA user

331 Pocket PC 2002

Pocket PC 2002, Microsoft' s PDA operating system, is more stable than the previous version and
includes MSN Messenger and a remote access client. Pocket PC 2002 offers a Windows XP-like
user interface, which includes 3D icons, pop-up alerts that appear atop rurming applications, and
a customizable Today screen. The X in the upper-right comer of all program screens has been
introduced, which closes the current application screen without shutting down the application
itself, thereby freeing up RAM. Among the included software Pocket Windows Media Player,
which supports streaming media, and a handheld version of MSN Messenger. The OS also now
has Transcriber, handwriting-recognition software that permits to write whole words or even
sentences rather than single characters, along with another new character recognizer. Having a
nobile Intermet access, Pocket PC' s terminal client grants access to Windows NT and other
servers and Windows 2000-level password security for confidential data.

By summer of the present year a new edition of the Pocket Pc OSis expected; Pocket Pc
2008. The plus of this new operating system is its better performance on PDAs powered with the
new Xscale processor. In fact, even if more powerful, applications thought for the StongARM
processor perform very poorly on this new platform with Pocket Pc 2002.

IMS ES client software is Jwa based and runs on top of the JEODE Jwa Virtuel
Machire installed on the PDAs.

332 Java Virtual Machine
The java language has been introduced by Sun Microsystems in 1995 with the purpose of
deploying dynamic content into web pages. The main idea was that of creating web pages that
not only contained static text and images, but also dynamic multimedia (video and aninations
supported by interactivity. Java has then extended its application to web server programming and
to software targeted for consume electronics (cell phones, PDAs, etc). Jvais a C/C++ based
language. This, together with some of its features as no platform dependence and the extensive
offer of packages explains why it is so widely used.
Since PDAs are definitely different from PCs and workstations in terms of hardware and
software capabilities, a range of java virtual machines specifically targeted for these devices has
been developed.

31

The first jvin targeted for limited devices has been Personalva. This jvm is based on the
java 1.1 specification. Supported libraries are limited with respect to those available on a PC
version and are not updated to the Java 2 specification. Included packages are:

* java.awt,
o javautl;
® javaio;

* javammi

More recent, Jwva 2 Micro Edition (PME) is Sin' s version of Java aimed at machines
with limited hardware resources such as PDAS, cell phones, and other consumer electronic and
embedded devices. 2ME is aimed at machines with as little as 128KB of RAM and with
processors a lot less powerful than those used on typical desktop and server machines. 2ME
actelly consists of a set of profiles Each profile is defined for a particular type of
device (cell phones PDAs, microwave ovens, etc) and consists of a minimum set of class
libraries required for the particular type of device and a specification of a Java virtual machine
required to support the device. The virtual machine specified in any profile is not necessarily the
same as the virtual machine used in Java 2 Standard Edition ((2SE) and Java 2 Enterprise Edition
(PEE). A profile in itself does not do anything; it just defines the specification.
Profiles are implemented with a configuration. A configuration may be thought as an
implementation of a 2ME profile for a particular type of device such as a PDA. Sone of the
configurations currently available are the CDC (Cornected Device Configuration) that targets
high end PDAs and the CLDC (Commnected Limited Device Configuration) that targets less
powerful devices. The Cormected Device Configuration will be the basis for the suocessor to
Sun's previous attempt at a Java ervironment for consumer device, Personalkva. Personallva
has had limited suocess in consumer market segments.

The jvm that has been used within the project is an improved and optimized version of
Personallva for Windows CE. This jvm, called EM-CE is provided by Insignia. The class
libraries included in the JEM-CE (the jvm is based on Insignia’s Jeode) runtime conmponernt are:
java.applet;
javaawt and sub-packagdes;
javabeans;

Jjavaio;

javalang and sub-paclages
javamath;

javaret;

javarmi and sub-packages;

java.security;

javagl;

javatext;

javautil and sub-packages.

The main difference in programming on this platform, with respect to PCs and
workstations, is the GUI. Personaklva does not provide the Swing package and so it is necessary
to get back to the AWT (Abstract Windowing Toolkit) package, deprecated in Java 2, in order to
use graphics.

To be able to deploy an application on the PDA, the necessary steps are:

e Compile the program including the necessary packages in the classpath using jdk1.2.2 (with
the EM-CE version of jeode it is expressivily asked to use this version of the jvm, instead of
the 1.1.8 used with the normal version);

32

¢ Copy the generated .class files on the PDA and run the application calling the jvm froma .Ink
file (a sort of batch file on the PDA, more or less must be irvoked the same commeand that
would be executed on the DOS shell in the Windows ervirorment).

Sun offers an enuiator, that may be downloaded from its site, that directly on the PC
performs a check whether the written and compiled code on the PC is compliant with the
Personal va specification. Once confident with the environment, however, it is easy to deploy
directly the bytecode on the terminal.

333 &eti Application
The IMS dlient software provided by Semens is kti. JEti is ajava application that runs on
JEM-CE for PocketPc 2002. The IMS dlient permits authorized users to register on the IMSes
platform and to erjoy Instant Messaging, two-party Chat and Presence services. The version
installed on the PC permiits to perform real-time audio /video calls too. Here follows the GUI of
the client as it looks on the PDA.

IMS 1.0 - Dffline
b4/Chat

= Buddies Ak
Mood: |SEine) d

i |Nickname |r'-'1cu:u:|

s Lothar Fig. 34 Jti GUI

+ Jochen

+ Birgit

% Elisabeth

1]] [D IMS 1.0 - Dffline

1] =] = bute
= Message E|A = MESSEQEIMM|“|*\|'.Q‘

B | From | Subject
£y userl0@imse... Re: wehnach..,
IMS 1.0 - Offline £y userl0@imse,.. test

= Message 21 userl0@imee... Re; Xmas
4 Chat e Yoep B[fa]B

1] T [[*
Chat with: |Lothar -] | | |

Subject: |Weihnan:hﬂ |

|New|

o chat =N

33

| ndd =~

= Buddies E|‘

The GUI is based on a rotating spaces environment. This makes the client vser-friendlier and
limits the waste of resources (memory and CPU). The four buttons on the up-right angle are
linked to the following tasks (from the leftmost to the right): online help, configuration data, plug
in management and exit. The configuration data permits the user to insert the P-CSCF with
which the terminal taks the registration settings (registration expire time, SP URI), the
availability of the user to publish its presence information or not.

The client has been built on java and embedded visual c++ (the use of c++ is tied to
platform dependent issues and to the request of mgjor performances for the GUI).

34 Selected Services

As already stated at the beginning, one of the main tasks of the project has been the
selection of SP based services to be demonstrated by Exploit. In general, the consumer services
may be divided in the following segments: “Information” services like infotraffic and
infoweather, “Comnumication” services like audio and video comnmumication, “ Entertainment”
services like rolegames and lotto, “Transactions’ based services as e-banking and e-conumerce.
All of the listed services are very promising, but those that combine Information and
Entertainment service features have been considered as the most challenging from the IMS point
of view. Infotainment services allow to demonstrate SP value added in the support of person-to-
person and person-to-machine commumications with respect to other protocols. Other services
that have been analyzed by the project are those of the Commumication area, in particular the
following services have been identified:
e Push messages to Close User Groups (push services for a commuunity of users);
e Virtual Bulletin Board (a bulletin board keeps users informed about an event of interest);

¢ Polite Telephony (thought for applying privacy filtering criteria to callg;

34

.)/
) //
. 7]

* bn
[+
_——

0 L T T T T T T T 1
1999 2000 2001 2002 2003 2004 2005

Year

Commerce == Entertainment

= Communication Information

Fig. 3.5 Expected revenues (Durlacher UMTS Report)

Click To Dial (web initiated calls, very useful for call centers for example);

Emxail Breakout (delivery of IM through SMITP protocol, in case the user isn't online);

SMIS Breakott (delivery of IM through SMS);

Text To Speech (corwersion of IM content to speech);

Click To Play (it gives the user the opportunity of enriching the session setup of a call with
audio, images and text);

Wake Up Call (opportunity of scheduling calls from a buddy list);

e PushTo Tak (half-duplex calls at lower rates, in a walkie-talkie fashion);

Finally, the project decided to focus on infotaimment services and among the candidates
the following applications have been selected:
¢ Fantacalcio;
¢ Roleganes;
e ECity.

Fantacalcio is very popular game in Italy, linked to the soccer championship. The main
reason that has lead to this choice has been its popularity. Each user build a fanta-team starting
with an initial budget and takes part to a championship. Among the tasks that are performed by a
user in taking part in a game there are the trade of players and the exchange of opinions on
players and teams between the participants. The systems has the responsibility of keeping the
user updated with the latest news on players and scores and to coordinate the game.

Rolegame, chosen for its many players around the world and in the Intemet, is a game in
which fantasy worlds and characters take place. Each player choses its character (a Dragon, a
Witch or an Elf, for example) and starts its jouney in a fantasy world. He will find battles and

35

enemies to beat on its way. Players interact among them in the exchange of cards (cards may
represert a potion, or vital strength or a weapor) and their trading. The system has the
responsibility of keeping the user updated with the latest news on players and scores and to
coordinate the game.

ECity groups a set of public utility services designed for commmumities of people living on or
visiting a city. Two applications of Ecity have been implemented for the first phase of the
project: Carsharing and BuddyFinder. The former was thought as a response to the increasing
disappointement among people due to traffic jams The latter can help a user to create new
relations. The user inserts the main characteristics of the type of person he is serching for (the
filter criteria may be based on age, sex and hobbies for example) and the system retums a list of
buddies that responsd to that criteria. The other applications of Ecity are: Ads&Advisors,
Infotraffic and InfoATAC.

All these service need the capabilities that are provided by the IMS ES Instant Messaging has
apart in the playing of games, in the trading tied to it and in the exchange of information among
wsers. Chat sessions permit the exchange of IV, it is the means by which, for example,
Rolegames battles are performed. Presence information has a role in the detection of other

players and in setting availability to play.

36

4. Jeti Client Architecture

The Exploit client has been designed based on the existing IMS cliertt, i.e. Jfti. Fti has
been designed with the intent of providing mobile network operators with the ability to add their
own services without being foroed to design and implement a complete new client for the IMS
ES Registration with the IMS and basic services such as Chat, IM and Presence are available in
Jeti.

In the following chapters a description of the Jti architecture will be given. This represents the
basis for the Exploit client design and it permits an understanding of the reasons for the changes
and add-ons that have been done for the project.

41 Reference Architecture (JETI)
The architecture of the all-java version of &t is as follows.

r——=—=-=-=-=-=-=-=-=-=-=-=-=-=-=-==-===== 1
SplashScreen StartupScreen IMSpace

RotatingSpaces BuddySpace ChatSpace

Java GUI (Rotating Spaces)

Inbox Outbox Chat Buddylist
Additional Application Registration
InstantMsg Chat

Registration Presence
High-level
SIP Stack
Java Riintime
Windows CE

Fig. 4.1 Alljava et architecture

The Jti application is divided in several strata. It provides High Level API that sits on top of a
Jain-like SP Stack. This API provides features such as Registration, Presence, Chat and IM. On
top of this API, other functionalities have been added in support of the above services: Inbox
(for IM), Outbox (for IM), Chat management, Buddy list and Registration management. The
GUI is the topmost stratum in the figure; it is based on the “rotating spaces” model (i.e. three
37

spaces, IM, Chat and Buddy list that exchange control on the screen; this is because the screen
space is limited and it is not possible to have the three services active all together).

GUI & Hiah-Level Aobolication Loaic

InstantMsg 2-P Chat Configuration

Registration [|Provider/Distributor || Presence

Provid
Provid Provid

|-|_ ListeninaPoint

Java Virtual Machine

OS Platform (WinCE/Win32/Linux)

Fig. 4.2 Closer look on the High Level API and on the SP Stack

The architecture of the ISP Stack is close to JSR32, but it is not a true SP J&in
implementation. The main differences from the JAIN SP APIs are;
— No support of the JAIN interface;
— No support of the SipFactory interface;
— Limited support of SP headers conceming the SP parser (but full read/write
access to any SP header);
— Support to only UDP as transport protocol.

The reasons that at the time of development led to this choice are:
— The focus of JBR32 which is Java 2, and not Personal lwva or PME;
— The necessity to keep the stack footprint as small as possible, because of the limited
ervironmmertt it runs on (PDA).
The SP stack follows the RFC 2543 specification. The SP Stack is configurable using a Jva
property file. Configurable properties are: the P-CSCF address, P-CSCF port, client port, log file
name, log level.

38

The developer may have access to the SP Stack through the High Level API; this permits the
MNO to us the existing services available (IM, Presence, Chat) and to build on these new
applications and services,

The SP Stack may be accessed directly too. This choice provides a better flexibility in the change
of existing services.

e SIP Stack access via High Level API: the cormecting point between the High Level API
ard the SP Stack is the ProviderDistributor class. Each SP request must be sert through an
instance of this class, implemented as a Singleton pattem. The ProviderDistributor class
provides a Plug-In interface for additional customer specific services, which need a
cormection to the CSCF via SP protocol. This is the only available approach if the user
warts to re-use existing services already built in the High Level API.

¢ Direct access to the SIP Stack: the class SpStack is implemented as a singleton pattem and
available via getter method. The Provider/Listener model is used for sending/receiving of
the SP requests/responses (as in Jin SP). The SpProvider class provides methods for
sending SP requests and responses. The class SipListener defines an interface, which is
necessary for the stack to inform a user of incoming SP requests/responses/timeouts. Class
ListeningPoint provides SP messages that come from a specified UDP port. Examples:

— Creating and sending a SP request:

//creating the SIP request

Request request = new Request (Request.MESSAGE) ;
request.setRequestURI (remoteUri) ;

//adding SIP headers

request.addHeader (new HeaderObject (HeaderObject.TO,
remoteUri.toString()));

request.addHeader (new HeaderObject (HeaderObject .FROM,
myUri.toString()));

//setting the body of the SIP method
request.setBody ("Merry X-mas and Happy New Year"));
//sending the request using SipProvider object

// (direct access to the SipStack)
sipProvider.sendRequest (request) ;

//or sending the request using ProviderDistributor
// (access via High-Level API)
providerDistributor.sendRequest (request) ;

— Receiving and analyzing a SP message (response):

public void processResponse (SipEvent event) {
//getting a Response object from the event
Response response = (Response)event.getMessage () ;
//getting SIP response code

int status = response.getStatusCode();
//getting transaction ID of the SIP transaction
long tid = event.getTransactionId();

//processing of a response to the MESSAGE
// (Instant Message)
if(isMessageId(tid)) |
if (response.getStatusCode () >= 300) {
//inform the user about failed
//delivery
}
else if (response.getStatusCode () >= 200) {
//inform the user about successful
//delivery

else if (...) { ... }
39

}

As already explained, it is possible to re-use the available services provided by the High Level
API. Here is amore in depth view of this package:

Registration: this feature provides a way to Register/Deregister the client application from
the IMS All services available in the High Level API require registration. The authentication
in the IMS is performmed through a challenge/response mechanism. This service provides an
automatic re-registration feature. There is a single point of access to registration features:

static Registration getRegistration|()
throws ConfigurationException,
SipException

The methods used for regjstration are blocking, waiting for a response or a timeout. The
properties used from the configuration file to perform this task are the user's SP address,
authentication information and the registration expire time (by default two houry.
Reregistration is based on an asynchronous mechanism, the observer pattem. An interface,
RegistrationListener, must be implemented and one of its methods registrationSucceed and
registrationFailed may be irvoked depending on the receipt of a suocess or failure response.
An example here follows of how the registration mechanism may be implemented with High
Level APIs:

public class Foo implements RegistrationListener ({
public Foo() throws ConfigurationException, SipException {
Registration.getRegistration () .addRegListener (this);
}
public void doRegistration() {
try {
Registration.getInstance () .register();
} catch(RegistrationException re) {
// Update GUI/Set application to offline mode
}
}
public void registrationSucceed(RegistrationEvent event) {
System.out.println ("Reregistration successful.");
}
public void registrationFailed(RegistrationEvent event) {
// Update GUI/Set application to offline mode
}
}

Instant Messaging: by means of this service, content can be sent in the body of a SP
MESSAGE. Valid contents are both text and attachments. Automatic fragmentation and
reassembly is done for those messages that exceed the MaxBodySize parameter configured in
the property file. As for Registration, there is a single point of access to the IM service:

static InstantMsg getInstantMsg()
throws ConfigurationException, SipException

Three methods for sending IM are available, one for sending only text, another for an
attachment only and the last for both text and an attachment:

void sendIM(String uri, String subject, String msg)
throws SendMsgException

void sendIM(String uri, Siring subject, Attachment att)
throws SendMsgException

40

void sendIM(String uri, String subject, String msg,
Attachment att) throws SendMsgException

In order to be notified of the events linked to this service (success or failure indications), the
MsgListener interface must be implemented (which provides methods sendMsgSucceed() and
sendMsgFailed()). Here follows an example on how this class may be used:

public class Foo implements MsgListener {
private InstantMsg im;

public Foo() throws ConfigurationException, SipException {
im = InstantMsg.getInstantMsg () .addMsgListener (this);

}

public void sendMessage () throws SendMsgException {
im.sendIM("user0l@imses.local", "test","Helloworld.");

}
public void sendMsgSucceed (MsgEvent evt) { ... }

public void sendMsgFailed(MsgEvent evt) { ... }

public void messageReceived (MsgEvent evt) {
System.out.println("Sender: " + evt.getPeer());
System.out.println("Subject: " + evt.getSubject());
System.out.println("Text: " + evt.getMessage());

Chat: the Chat APIs provide methods that permit a user to initiate, control, close a chat
session and handle chat inwitations by other parties. Only two-party chats are supported. As
for other services, a listener interface must be implemented in order to handle incoming
events. Here an example of how a chat may be implemented; the main difference with
respect to other services is that a chat constructor takes a Boolean argument, if true the
instantiated object acts as a server and listens to incoming requests, otherwise (false) it acts as
aclient.

public class Foo implements ChatControllListener, MsgListener {
private Chat server;

public Foo() throws ConfigurationException, SipException {
server = new Chat (true);
server.addChatControlListener (this);
server.addMsgListener (this);

}

public void initiateSession() throws ConfigurationException,
SessionException, SipException {
Chat chat = new Chat (false); // client chat object
chat .addChatControlListener (this);
chat .openSession ("userOl@imses.local", "Hello",);

}

public void processRinging(ChatEvent event) { ... }
public void openSessionFailed(ChatEvent event) { ... }

public void openSessionSucceed (ChatEvent event) { ... }
public void sessionInitiated(final ChatEvent event) {
// Show and handle invitation dialog

}

public void messageReceived (MsgEvent evt) {
// Display chat message in GUI
}

41

public void sessionClosed(ChatEvent event) { ... }

}

¢ Buddy List: the main features that the Presence API provides are the opportunity to publish
user information and to subscribe to presence information of other users. The methods that
perform these tasks are provided by Presence class (implemented as a singleton object).

void publish (String presInfo)
void unpublish ()

void subscribe (String uri)
void unsubscribe (String uri)

An example of the methods that must be implemented in order to manage Presence flow of
messages follows.

public class Foo implements Presencelistener {
private Presence pres;

public Foo() throws ConfigurationException, SipException {
pres = Presence.getPresence();
pres.addPresencelistener (this);

}

public void publish(String xml) throws ConfigurationException,
PresenceException, SipException {

pres.publish (xml);
}

public void subscribe () {
subscribe ("<sip:user0l@imses.local>");

}

public void publishSucceed (PresenceEvent e) { ... }
public void publishFailed (PresenceEvent e) { ... }
public void subscribeSucceed (PresenceEvent e) { ... }
public void subscribeFailed(PresenceEvent e) { ... }

public void notifyReceived (PresenceEvent e) {
// Parse XML information
// Update buddy status/information in GUI

}

42 Plug in Extensibility

The whole ervironment has been developed with the intent to permit developers (MNOSg) to
build more blocks on the existing platform. This is certainly a great advantage in building new
services, because it is not necessary to start from scratch.
The extensibility is possible on two different levels, High Level API and GUI, and may be done
onboth of them
The High Level API permits the developer to register its service plug in through the
ProviderDistributor class. The only instance of this class acts mainly as a mux/denur; it
recognizes to which service a received message must be passed or it may be used from a service
to send a request or a response. When a developer wants a new service to be considered in the
distribution of incoming messages, the method registerPhugin must be irvoked on the
ProviderDistributor class. This action tells the class to send any incoming requests to the service
object, before passing it to Jkti for processing. The service checks incoming messages ard it
respords with a true or false. In case the retum value is true, the message is not passed to Jkti

42

since the message has been processed by the service. In case the retum value is false, the message
is not sent to any of the available services and Jeti will process it. The only disadvantage of this
architecture is that for every new service one more check nust be done when a message is
received and this may dow down the client with many active services.

The J2ti GUI permmits the developer to start new services directly from the existing graphical
interface. When the application is entered, on the top right four different buttons are visible. The
third from the left is the one that leads to the plug in panel. In this panel, the plug in reported in
the plugins.txt file (file that resides in the same directory as the application) are listed. In order to
activate the desired plug in, the name of the plug in must be checked and the start button must
be clicked. This action irvokes the startPlugin() method on the plug in. In order to be recognized
asaplug in, the service must implement the GUIPlugin interface.

GUIPlugin(s) > ?;%-in GUI
og
h IMS
Application

/ API

¢ / y y 4

ServicePlugin(s) Chat Presence ™M Registr.
Av €

~

- <
SIP Provider/ . WLAN/GPRS
Distributor Configuration
IMS Application Service API
SIP Stack API Control
SIP-Stack
A\ 4

Network Control (JNI)

Data Control

Operating System

GPRS/WLAN

Fig. 4.3 Two level plug in extensibility

421 Plug in deployment and creation
Each GUI plug in nust implement interface dass
de.demensicmims.client.testapp.util. GUIPlugin. Each plug in that requires access to the IMS
core network st also implement interface dass
de.demensicmims.client.testapp.util. GUI Plugin.

43

In order to deploy the plug in a java archive file (jar) of the plug in must be created. This file
nust be copied on the PDA, for example under the directory where the application runs. At this
point a new record in the /JETI /plugins.txt file must be inserted. Each record has to start at a
new line and consists of three parts divided by colons:

plug in namemain class of the plug ingjar file of the plug in.

Fig. 44 Plugin Use Case

422 Plugin start
JETI plugin needs to be started from the plugins panel. Pressing the start button the
method stopPlugin on the class that implements the interface class GUIPIugin is irvoked. The
sequence diagram that describes what happens when the user starts the plug in follows.

N
i y
: ProvaPlugin : Provider
. User T,
Distri r

| 1: startPlugin() | , _—
‘ 2: registerPlugin() |

.

Fig. 4.5 Plugin Start Sequence Diagram
423 Plugin stop

The user can also stop the plug in. The stop button is next to the start button in the Plug
in panel and invokes the method stopPlugin on the desired plug in. In the stopPlugin method a

44

call on the ProviderDistributor's functions must be made, so that the plug in no longer intercepts
Incoming messages.

()

_/

- User : ProvaPlugin : Provider
- Distributor

| 1: stopPlugin

\
2: deregisterPIuginﬁ)

() \
L]
|
| |
| |
| |

Fig. 4.6 User stops the plugin

424 Handling of incoming SIP requests
Any requests are first processed by plug-ins. The plug in must verify that the request is
for it. This is accomplished through the retum type of the plug-in's processRequest() method. If
the message is meant for a service managed by the plug in the method retums a true value
(boolean), otherwise it returns a false one.

45

O

: ProvaP lugin . Provider
o _ 2nd party or
Distributor
system
\
| 1: processRequest() |

|
T
\
|
\
|
\
|
2:sendResponse()‘
\

3: 200 OK()

The response AN

might for example

L] | |be 200 OK if the

‘ ‘ service is right an
d it set to be able

| | handle the |

\ \

\ \

request. \

Fig. 4.7 Handling of ISP requests by a plug in

425 Implementation of a sample plug in class
As already said at the begirming, there are two interface classes that must be implemented
in order to gain interoperability with the Jti GUI and to gain access to the IMS network:
GUIPhugin and ServicePlugin. Here are the signatures of the methods that are inherited from
these two interfaces and that must be implemented.

Public class ProvaPlugin implements GUIPlugin, ServicePlugin {
ProvaPlugin () {

}

public boolean processRequest (SipEvent event) ({
//inherited from the ServicePlugin interface.
//Handles incoming requests. Must return true when a
//request 1s recognized as destinated to one of the
//services implemented in the plugin.

}

public void processResponse (SipEvent event) {
//inherited from the ServicePlugin interface.
//Handles incoming responses. No check must Dbe done
//since the ProviderDistributor class keeps track of

46

//the objects that start a transaction and so delivers
//it related responses.

}

public void processTimeout (SipEvent event) {
//inherited from the ServicePlugin interface.
//This method is invoked when a timeout on a request
//is called from the SIP stack.

}

public void startPlugin() {
//inherited from the GUIPlugin interface.
//This method permits the user to start the plugin
//from the Jeti interface. Here the initialization of
//services and registration of the plugin in the
//ProviderDistributor class must be done.

}

public void stopPlugin () {
//inherited from the GUIPlugin interface.
//This method permits the user to close all services
//related to this plugin and to deregister the plugin
//from the ProviderDistributor class.

}

public void showPlugin () {
//inherited from the GUIPlugin interface.
//This method is intended for the rendering visible
//the plugin GUI, when the plugin 1is active in the
//background.
}

public String getStatus() {
//inherited from the GUIPlugin interface.
//This method return the status of the plugin. This
//status is set to “running” when a call on
//startPlugin() 1is made and back to “stopped” when a
//call to stopPlugin() is made.

}

private String status = new String(“stopped”);

47

5. Exploit Client Architecture

The architecture of the Exploit Client is that depicted in the following figure:

eCity Fanta Role JETI
Calcio T Game
M : * Presence
PluginConnector ServiceConnector . Buddy list
* Inbox
Common Plugin + Chat rooms(4)
* Default Instant Messaging

EXPLOIT plug in JETI

Fig. 5.1 Exploit plug in Architecture and basic services provided by Jti

Service specific functionalities are implemented as a ETI plug in, named EXPLOIT plug in.

EXPLOIT Plugin
A

— — //
_— — - ////
_— - //
_— - //
- -
,/’/ - //
//’/ - //
ECity Fantacalcio /Rﬁagames
\\\\\\ -
CommonPlugin JETI

Fig. 5.2 Exploit plug in components and their interaction with Jeti

The EXPLOIT plug in is designed to support all service specific GUIs (ECity, Fantacalcio,
Rolegames and a common GUI on top of a conmmumnication infrastructure. The communication
infrastructure is common to all services

The Exploit’s client GUI is composed of a top panel where services may be viewed and accessed
and a bottom panel that lets the user commumicate and switch between services. The Rolegames,
ECity and Fantacalcio services manage the top panel while the initiation of an audio call, a chat
session or the sending of an IM is possible from the bottom panel.

48

All commumication services have been implemented in a single plug in. This design choice has

been nede in order to minimize development and integration efforts. Because of this,

development of service GUI and logic may be separated from the development of

communication functiorelities. Moreover, the interface defined between the service GUIs and

the CommonPlugin allows a good degree of independence between work on GUIs and on low-

level functionalities.

In particdlar, two interfaces have been identified:

e ServiceConnector, which is implemented by each service in order to receive incoming
requests and calls (incoming messages from the network);

¢ PluginConnector, which is implemented by CommonPlugin to manage outgoing service
requests and calls (outgoing messages to the network).

EXPLOIT plug in comprises the following main modules:
¢ ConmonPlugin (the module that embodies all commumication features);
¢ Service logics and GUIs
— CommonPlugin GUI (this GUI pemmits the user to perform cornventional
ocommrication):
& ServiceSupport.
— Service GUIs (these GUIS permit the user to play or use a particular service, the
following being those implemented for the project):

« ECity;

& Fantacalcio;

& Rolegames.
Each service requires a specific module containing the local application GUI and logic.
The CommonPlugin module is intended to provide the following capabilities required by
EXPLOIT services:
Buddy List support;
Push messages management;
Alias support;
Chat management;
Enriched INVITEs (SP INVITE containing images and ring tones);
Audio call.
The CommonPlugin module is responsible for the dispatching of notifications about incoming
messages that have an impact on service GUI and logic and for the management of actions

triggered by GUI events.
Services related messages (e.g. IM for Fantacalcio and for Rolegames) are discriminated by their

SP URLSs and other project specific headers (new SP headers have been defined within the
project so to simplify client-service interactiony like FromAlias, ToAlias and ServiceN amre.
Each service GUI is responsible for:

¢ Managing service look and feel (graphical appearance and service logid);

e Mapping of GUI events into CommonPlugin actions;

e Mapping of CommonPlugin notifications into GUI events.

EXPLOIT plug in is designed for allowing the management of:
e one buddy list for each service GUI;
e four chat rooms available for the all services (chat rooms are allocated on a FCFSbadg).

49

51 Exploit plug-in interfaces

As introduced in the previous section, Exploit plug in can be seen as the aggregation of
service specific components and a common component which takes care of “conmmon
functions’, called CommonPlugin. Low level interactions between Exploit plug in and JETI are

handled by ConmmonPlugin.

In order to pemit the interaction between service GUIs and CommonPlugin two
interfaces have been defined: ServiceConnector and PluginCormector.
ServiceCormector must be implemented by al service GUIs. PluginCormector is

implemented by CommonPlugin and used by all service GUIs.

ECity

RoleGames

FantaCalcio

Any senice GUIs invokes
PluginCoonector methods
to interact with Common
plugin objects

<<Interface>>
—| SeniceConnector

Common plugin objects
invokes Senice
Connector methods to
interact with any senice

R GUIs
- B -
_— — — /
~
—
\
\
\
\
\
— \
— ~
— ~ /
—
T X <<Interface>>
> PluginConnector

—

—

CommonPlugin

Fig. 5.3 Interaction between the PluginCormector and ServiceCormector interfaces

A more in depth description of the new interfaces defined in the Exploit plug in follows.

511

<<Interface>>
EChatControlListene

<<Interface>>
EPresencelListener

hotifyReceived()

[lchatSessioninitiated()

lchatSessionClosed()

[lchatProcessRinging()
chatOpenSessionSucceed()
chatOpenSessionFailed(

The ServiceConnector Interface

<<Interface>>
EMessagelListener

messageReceived()
chatMessageReceived()

sendMessageFailed()

<<Interface>>
EVolPControlListene

voipSessionlnitiated()
voipSessionClosed()
voipProcessRinging()
voipOpenSessionSucceed()
voipOpenSessionFailed(

%

\
\

4

/

<<Interface>>
ServiceConnector

Fig. 54 Class Diagram of the ServiceConnector interface

ServiceCormector provides each service with all the methods that have to be implemented in
order to reflect incoming notification into GUI events.
This means that the control of application behavior and GUI nmust be associated with the
irvocation of all the above-identified methods.
ServiceConnector inherits the methods provided by four abstract classes:
¢ EPresenceListener. deals with presence
— notifyReceived notifies that new presence information is available for one of the
buddies listed in the service related buddy list.
e EChatControlListener: deals with chat session management and setup
— chatSessionInitiated: notifies that an irvitation to join a session has arrived (the
attached image and ring tore are retumed);
chatSessionClosed: notifies that the session has been closed by a remote party;
chatProcessRinging. notifies that the called party terminal is ringing;
chatO penSessionSucceed: notifies that called party accepted the call;
— chatOpenSessionFdiled notifies that called party refused the call.
o EMmgeLlstener deals with incoming messages:
— messageReceived notifies that a message has been received;
— chatMessageReceived 1otifies that a message within a chat session has been
received;
— sendMessageFdiled notifies that some problems occurred, this method is used
both inside and outside a chat session;
¢ EVoIPControlListener: deals with audio call management and session setup
— voipSessionInitiated: notifies that an irvitation to join a session has arrived (the
attached image and ring tore are retumed);
voipSessionClosed: notifies that the session has been closed by the remote party;
voipProcessRinging. notifies that the called party terminal is ringing;
voipO penSessionSucceed: notifies that called party accepted the call;
voipOpenSessionFdiled: notifies that called party refused the call.

11

J

I |

Here are the detailed signature of the above methods:

¢ EPresenceListener
— void notifyReceived(String sipURL, String alias, String status)
throws UnknownBuddy. This method is irvoked when a SP NOTIFY sent from
the Presence Server arrives and the CommonPlugin identifies it as related to a
buddy set in ore of the service's buddy list.

¢ EChatControlListener:

— void chatSessionInitiated (String fromAlias, String toAlias,
String from, String subject, byte[] image, byte[] sound, String
text, String callId). This method is irvoked on a service when a SP
INVITE identified as session setup for a chat commmmnication arrives and when the
ServiceN ame header vale is identified as that of an available service.

— void chatSessionClosed (String calllId) throws UnknownCallId. This
method is irvoked when a SP BYE is sert by the 2" party who leaves the chat
room. Since the chat exchanges are identified on a Call-ID basis, the exception is

51

thrown if the Call-ID passed as parameter is not recognized by the service logic.
The rule remains the same in all the other methods that may throw this exception.
void chatProcessRinging (String callld) throws UnknownCallId.
When provisional responses of type 180 Ringing arrive from the called client, this
method is called on the service implementation.

void chatOpenSessionSucceed (String callId) throws UnknownCallId.
When the called party accepts the irwitation to enter the chat room a 200 Ok
respons<e is sent. This is trandated at the service level by the call to this method.
void chatOpenSessionFailed (String callld) throws UnknownCallId.
In case the response is of type 3xx, 4xx, &xx, 6xx (ary kind of failure), this method
isirvoked.

* EMessageListener

—

void messageReceived (String fromAlias, String toAlias, String
from, String subject, byte[] image, byte[] sound, String text)
throws UnknownMessage.

void chatMessageReceived (String fromAlias, String toAlias,
String from, String subject, byte[] image, byte[] sound, String
text, String callId) throws UnknownCallId. Thismethod is called on the
service's implementation when the incoming SP MESAGE is recognized as
belonging to a chat session.

void sendMessageFailed (String to, String subject, String
errorMessage) . When a failure response is retumed to a sent SP MESSAGE,
the invokation of this method alerts the service implementation to this.

¢ EVoIPControlListener: the methods that manage the incoming SP requests or responses
related to the voip service have the same logical meaning as those already described for the
chat service.

—

1 1 11

void voipSessionInitiated (String fromAlias, String toAlias,
String from, String subject, byte[] image, byte[] sound, String
text, String callld).

void voipSessionClosed (String callIld) throws UnknownCallId.

void voipProcessRinging (String callld) throws UnknownCallId.
void voipOpenSessionSucceed (String callld) throws UnknownCallId.

void voipOpenSessionFailed (String callld) throws UnknownCallId.

52

512 The PluginConnector Interface

<<Interface>> <<Interface>> <<Interface>>
eChatControl EMessageControl EVolPControl <<Interface>>
EPresenceControl
*chatAcceptSession() *sendMessage() *oipAcceptSession()
*chatlnitiateSession() *chatSendMessage() *oiplnitiateSession() Spublish()

Y | 4]

\

\ /
<<Interface>>
PluginConnector

Fig. 5.5 Class Diagram of the PluginConnector interface

The PluginConnector interface provides services with methods that have to be irvoked in order
to trigger CommonPlugin actions.
CommonPlugin inherits the methods provided by four specific abstract classes:
e EChatControl: deals with chat session management:
— chatAcceptSession allows acoeptance or rejection of a session invitation
— chatInitiateSessiornt allows the sending of a session invitation (an image and
ringtone can be specified).
¢ EMessageControl: deals with outgoing messages:
— sendMessage. allows the sending of a message;
— chatSendMessage: allows the sending of a message within a chat session.
e EVoIPControl: deals with audio session management:
— voipAcceptSession allows the acceptance or rejection of a session invitation
— voipInitiateSessiort allows the sending of a session invitation (an image and
ringtone can be specified).
¢ EPresenceControl: deals with the publishing of service specific presence information
— publish: allows the provisioning of game specific availability information.

These detailed signatures of the above methods:

¢ EChatControl

— void chatAcceptSession(String callld, String soundPath,
String imagePath, boolean accept) throws UnknownCallId. This
method is invoked when the user agrees to enter a chat session to which he has
been invited. At a SP stack level this information is trandated into the sending of a
200 Ok response. The parameters soundPath and imagePath may be set to attach
information as an image or a sound clip in the response (i.e. when a Rolegames
player is invited to battle, he is able to send the image of his character and his sound
clip when he accepts in the response).

— void chatAcceptSession(String callld, byte[] sound, byte[] image,
boolean accept) throws UnknownCallId.

53

—1 String chatInitiateSession(String fromAlias, String toAlias,
String serviceName, String to, String subject, String soundPath,
String imagePath, String text, ServiceConnector
serviceImplementation) throws ChatRoomsBusy:fhek%irimmTEﬂﬂfﬂﬁbnTE
the PluginCommnector implementation about which service (i.e. Fantacalcio,
Rolegames) is sending the request. The Call-ID retum value nust be stored in order
to be able to recognize further messages related to the initialized session and to
send messages within the session. The other parameters are related to the amourt
of information that the user wants to convey in the SP INVITE (i.e. Rolegames
uses chat communication to implement battles, the sent image represents the battle
Ioon of the player and the sent sound his battle yell).

— String chatInitiateSession(String fromAlias, String toAlias,
String serviceName, String to, String subject, byte[] sound,
bytel] image, String text, ServiceConnector
serviceImplementation) throws ChatRoomsBusy.

¢ EMessageControl:
—1 void sendMessage (String fromAlias, String toAlias, String
serviceName, String to, String subject, String imagePath, String

soundPath, String text). Thismethod pemmits the service to send standalone

SP MESSAGEs.
- voild sendMessage (String fromAlias, String toAlias, String
serviceName, String to, String subject, byte[] image, bytel]

sound, String text).

— void chatSendMessage (String fromAlias, String toAlias, String
serviceName, String to, String subjectString imagePath, String
soundPath, String text, String callId) throws UnknownCallild. Itis
used within a chat session. It permiits a service to send IM within a chat session

specifying the Call-ID of the message.

— void chatSendMessage (String fromAlias, String toAlias, String
serviceName, String to, String subject, bytel[] image, bytel]
sound, String text, String callld) throws UnknownCallId: to be used
within a chat session.

¢ EVoIPControl:

= void voipAcceptSession (String callld, boolean accept) throws
UnknownCallId.

—1 String voipInitiateSession (String fromAlias, String toAlias,
String serviceName, String to, String subject, String soundPath,
String imagePath, ServiceConnector serviceImplementation) throws

SessionBusy: the String retum value is the Call-ID that must be stored in order to
be able to recognize further messages related to the initialized session. The
SessionBusy exoeption is thrown when the user attempts to make a new call while
still busy on an old ore.

* EPresenceControl:

= void publish (Stringl[] openGames, String alias) throws
syntaxError: the method permits specifying the game availability (media type) and

the alias (note) that user wants to register/publish. The information passed by the

publish parameters is stored in the PluginCormector implementation. When a

publish message is sent, the Presence Server is triggered to send a SP NOTIFY to

all watchers. The information sernt with the ISP NOTIFY is the presence

information received in the SP PUBLISH. The Presence Server fills NOTIFYs

with only the last user information it received. If presence information was not

54

stored in the PluginCormector object and was not all sent in every publish, a service
would activate itself sending only its presence information. All the information sent
by already active services would be forgotten. This would result in other users
clients understanding that only this last service is activated while the others have
been st down.

613 Alias management and service discrimination:
The ServiceCommector and PluginComnnector methods provide support for alias
nmanagement by means of two specific parameters:
e Sting fromAlias: it allows specifying the originator’s alias;
e Sting toAlias: it allows specifying the alias of the message recipient.

The values set in these parameters are those set in the FromAlias and the ToAlias headers of a
SP message. The use of these headers has been conceived for those within a service who may
wart to use an alias. Some services are built on aliases. An example is the Fantacalcio gamme,
where the alias represents the name of the user's team. The same may be said for the Rolegames
service; the alias represents the name of the character invented by the user. These headers are
meart to support services.

The ServiceCormector and PluginCormector methods allow discriminating between supported
services by means of the following parameter:

e Sting serviceN ame: it allows specifying the name of the service (e.g. “fantacalcio”) that
originated a service specific message (e.g. SP MESSAGE, SP INVITE).

The following EXPLOIT specific SP headers convey the fromAlias, toAlias and serviceName
information:

FromAlias: fromAlias
ToAlias: toAlias
ServiceName: serviceName

The “ServiceName” SP header will be used by services rurming on the Application Engine to
discriminate which service is in charge to process the SP message. Given that SP
related to peerZpeer commumication do not need to be processed, ServicelN ame should be coded
with “peer2peer”.

Here follows an example of the messages that may be exchanged between two users in the play
of a game. The messages are exchanged within the Fantacalcio service, so the ServiceName
header valwe is set to “fantacalcio”. In the Fantacalcio game, the user’s alias is the name of his
team. In this case, the coding rule says that the values of the FromAlias and the ToAlias headers
nust be set specifying the game’'s name (i.e. fantacalcio), the kind of league the player playsin (i.e.
private), the name of the league (ie. H3G) and the team's name (i.e. Ronw). The SP
MESAGE’s subject explains that the players are trading players for their teams.

55

SIP MESSAGE sip:user02Q@tre.it

From: <sip:user(Ol@tre.it>

To: <sip:user02@tre.it>

Call-ID: 483754325@20.20.20.20

CSeq: 456 MESSAGE

Subject: Football player trading
FromAlias: fantacalcio.private.H3G.Roma
ToAlias: fantacalcio.private.H3G.Lazio
ServiceName: fantacalcio

The following could be a standalone SP MESSAGE or it may be sent within a chat session.
The valte set in the FromAlias header is the user’s nickname. The user in the setup panel of
the Jti application may set the nickname. The ToAlias header value is set to CHAT_USER,
because the alias of the remote user is not known.

SIP MESSAGE sip:user02Q@tre.it
From: <sip:user(Ol@tre.it>

To: <sip:user02@tre.it>
Call-ID: 483754325@20.20.20.20
CSeqg: 436 MESSAGE

Subject: How are you?
FromAlias: Gustavo

ToAlias: CHAT_USER
ServiceName: peer2peer

52 Exploit plug-in main classes

The nmuin module that takes care of commmmication has been called CommonPhugin, in
the previous chapters. The ConmmonPlugin module contains several classes that will be here
described. These classes may be grouped on the basis of their functionalities.

In order to gain interoperability with Jti, two classes have been defined, CommonPlugin
and CommonFunctions. CommonPlugin implements the GUIPlugin interface. It is the entry
point to the Exploit Client from the Jti GUI because it is irvoked when starting the plug in.
CommonFunctions implements the ServicePlugin and the PluginCormector interface. It manages
incoming and outgoing messages. It is the heart of the application.

The dasses that manage communication services are ChatService, InstantMsgService,
PresenceService and Voip (the Voip service is implemented by several classes, as will be seen
further on). These classes may be irvoked by the CommonFunctions instance and may irvoke a
ServiceComnector implementation and access the SP stack They implement the logic of
conmmmurication, compliant with the SP protocol.

More classes have been implemented. They mainly support those that have already been
mentioned.

521 The CommonPlugin class

In order to be instantiated from the Jeti GUI, the CommonPlugin class must implement
the GUIPIugin interface. The methods inherited from this interface are here described in more
detail:

56

startPlugin(): The start button on the J&ti GUI invokes the startPlugin method on the plug
in. In the body of this method, an instance of the CommonFunctions class is obtained and
registered in the ProviderDistributor class. After registering, the start() method is irvoked on
the CommonFunctions class, which initializes an intermal state variable and the service’s
GUIs

public void startPlugin() {

try |
cm = CommonFunctions.getInstance () ;

} catch (Exception e) {

}

try {
pd = ProviderDistributor.getProviderDistributor () ;
pd.registerPlugin (cm) ;

}

catch (Exception e) {
}

status = "started";
cm.start () ;

}

showPlugin(): The start button initializes the client to listen for incoming requests, but no
GUI appears. In order to make the GUI appear, the show button must be clicked. With a
click on the show button the showPlugin() method is irvoked on the plug-in. The only task
of this operation is to irvoke show() on CommonFunctions that will let the Exploit GUI

dppear.

public void showPlugin () {

if (status.equals ("stopped")) {
mw.showMessage ("The plugin must be started");
return;

}

else {

cm.show () ;
}
}

hidePlugin(): This method is implemented, but is not necessary. When the Exploit Client is
active, the hide button is not visible because of the PDA’s limited screen. In order to hide the
GUI the top left cross button on the window may be used, leaving the client listening for
incoming requests.

stopPlugin(): The stop button stops the dient listening to incoming requests. This is
achieved by deregjstering the CommonFunctions instance in the ProviderDistributor class.

public void stopPlugin () {

try |
pd.deregisterPlugin (cm) ;

}

catch (Exception e) {
System.out.println(e);

}

status = "stopped";

cm.stop () ;

cm = null;

57

e getStatus(): This method retums the value stored in the “status” global variable. The values
it takes may be “ started” or “stopped”.

522 The CommonFunctions class

CommonFunctions is the main class of the Exploit Client. This class has the role of
nmanaging incoming requests from the SP stack, requests coming from GUI events and the
interactions with the classes that implement IM, Presence, Chat and Voip. This class is registered
in the ProviderDistributor class, in order to manage incoming requests. It implements the
PluginCormector interface in order to be irvoked by GUI events. This is the only class that keeps
instances of the ChatService, PresenceService, InstantMsgService and Voip in order to deliver
them incoming messages. The singleton pattem has been chosen for this class. The factors that
led to this design are the need of a single point of access to incoming messages and services and
the need to limit class instances on a poorly performing ervironment such as a PDA. When the
constructor is called (only once: when the object is already built the same instance is always
retumed), the “ servicesoonf.txt” file is read. This file tells the object which services are active and
which related classes may be instantiated.

The methods of this class that manage incoming messages are the processRequest() and
the processResponse() class, both are inherited from the ServicePlugin interface.

The processRequest() method is called every time a new SP request is received by the
stack. The ProviderDistributor class first delivers the request to the CommonFunctions instance.
This action is performed by invoking the processRequest() method on ConmmonFuntions and
passing it a parameter of type SipEvent. The SpEvernt class is a container for all the information
regarding a SP event. P events, for example, are the receipt of a request, a response or a
timeout. By performing checks on the attributes of the SipEvent object the CommonFunctions
class can understand if the message is directed to the Exploit client or not. In the fonmer case,
CommonFunctions irvokes one of ChatService, PresenceService, InstanMsgService or Voip
retuming true to the ProviderDistributor instance, in the latter it simply retums false. The first
check that is done in the processRequest() method is on the type of request. The requests that are
handled are SP MESSAGEs, SP INVITEs, SP CANCELs, SP BYEs, SP ACKs and SP
NOTIFYs

The CommonFunctions dass does not simply hand messages to other classes, it isable to
urderstand which objects must handle the messages it receives. When a chat session is setup the
callld is bound to the chat object that handles the new chat room. This is done in order to
distinguish a SP MESSAGE related to the chat. In case the request is a SP MESSAGE, here
follows the pseudo code of the CommonFunctions processRequest() method,

IF the CallID is not recognized as that of an existing session,
THEN

IF the message is recognized as a push message (the From header

user name value 1is set to a service’s name, i.e. From:

<sip:ecity@h3g.it>)

ELSE IF the message was sent from a peer service(the

ServiceName header must be present)
IF the ServiceName 1is of the type servicename, 1i.e.
ServiceName: fantacalcio, the InstantMsgService’s
messageReceived () method is invoked.
ELSE the ServiceName header value is blank, the
InstantMsgService’s messageReceived() method is invoked
and the message will Dbe managed by the ServiceSupport
implementation of the ServiceConnector interface.

58

ELSE the Callld is recognized as that of an existing session. The
ChatService’s messageReceived() method is invoked.

ConmonFunctions keeps track of the available chats; in case all chats are busy, a SP 486 Busy
Here response is sent. In case an available chat is available, the callld value of the SP INVITE
header will be bound to the ChatService instance that manages the new chat room. As well as for
chats, CommonFunctions stores information on the state of a Voip session. If no call is setup,
the callld value of the SP INVITE header is stored in the CommonFunctions instance. If a call
is setup, only a new SP INVITE with the same callld value will be processed (it could be the
case that the second party is willing to change dynamically the media exchanged), otherwise a
failure response will be sent. Voip invitations must have a ServiceName header value set to
“Voip”, otherwise the message will not be understood. There follows a pseudo code example of
how SP INVITESs are processed:

IF the CallID in known as that of an existing VoIP session OR (the message
is recognized as an invitation to a new VoIP session (the ServiceName
header must be set to voip) AND the voip session is not already busy),
THEN the Voip’s inviteRequestReceived method is invoked and the
ServiceSupport implementation of the ServiceConnector

interface will manage the request.
IF the CallID is known as that of an existing Chat session OR (the message
is recognized as an invitation to a new session (the ServiceName header is
set to one of the available services, i.e. ServiceName: fantacalcio) AND a
free chat room is available),

THEN the ChatService’s inviteRequestReceived method is invoked and

the service’s implementation of the ServiceConnector

interface will manage the request.

The pseudo code that describes the behavior of the processRequest() method in the case of the
receipt of aSP ACK, aSP CANCEL or aSP BYE request is similar:

IF the CalllID of the incoming request is that of an existing chat,
THEN the request 1is forwarded to the ChatService’s object invoking
the ackRequestReceived, the cancelRequestReceived() or the
byeRequestReceived () method. These methods are then mapped on the
ServiceConnector’s implementation.

IF the CallID of the incoming request is that of an existing Voip session,
THEN the request 1is forwarded to the Voip’s object invoking the
ackRequestReceived, the cancelRequestReceived() or the
byeRequestReceived () method. These methods are then mapped on the
ServiceSupport class which implements the ServiceConnector interface.

When a SP NOTIFY is received, the state table is checked and the message is forwarded to the
services the SP URI is bound to:

IF the dblTable (the table that binds SIP URIs to services; it is built
when a DBL is received) contains the presentity’s SIP URI,
THEN extract the services bound to the presentity’s SIP URI from the
dblTable and cycle invoking the notifyReceived() method on the
PresenceService instance, once for each service.

The processResponse() method nmnages responses to st requests The
ProviderDistributor class keeps track of the transaction ids of the objects that have sent a

59

reques; in this way, responses are directly forwarded to the object that sent the request.
CommonFunctions has a similar mechanism necessary to know which of ChatService,
InstantMsgService, PresenceService and Voip serit the request to which the response is meart.
Every time an instance of ChatService, InstantMsgService, PresenceService or Voip sends a new
request, it must register the transaction id of the new request in the CommonFunctions instance.
The registration binds the transaction id to the instance that sends the request. When a response
to the request arrives, the CommonFunctions class will know to whom the response is sent and
will be able to cancel the associated entry in the transaction id table.

The CommonFunctions class must implement one more method inherited from the
ServicePlugin interface, the processTimeOut() method. This method is not bound to any
incoming message. The SP event that leads the stack to invoke this method is the timeout of a
request. When a request is sentt, the SP stack expects a response within a given time. If the
response doesi't arrive in the expected time, the processTimeOut() method is invoked.

The ConmmonFunctions class nmust implement al the methods defined in the
PluginConnector interface. The Exploit services see it as the connection point to the SP stack.
When ore of the methods inherited from the PluginCommector interface is irvoked, the
CommonFunctions instance sends the request to the class that effectively manages that type of
conmumication. Most of the methods have a double signature in their implementation. One
signature permiits the invoking class to pass an image and a sound clip in an array of bytes format.
The other allows setting the path to the file on the filesystem that stores the image or the sound
clip. This choice has been dictated by the need, on one hand, to be able to receive media files
from the system and send them back to the system or to other players (i.e. in the Rolegames
service card decks are downloaded from the system and may be sent when a garre is played). On
the other hand, the user may want to send media files stored on the filesystem, so this justifies
the necessity for the seoond signature.

523 The Commmumication classes

While the CommonFunctions class has a managing role in the module, commumication
classes are specialized on single tasks. The ChatService class performs signaling within a chat
session. The PresenceService class lets services send and receive presence information. The
InstanMsgService class takes care of sending IM and of receiving them out of chat sessions. The
Voip dass performs signaling within a voip session and manages the RTP session start and
closure.

The ChatService, PresenceService and Voip classes extend the TimeTask abstract class.
This class belongs to the de.siemensicm.ims.client.protocol.ip.sip.util class (part of the jeti High
Level API). This abstract dlass, together with the Timer class belonging to the same package,
permits the implementation of the timeout mechanism. This mechanism is used, for example,
when a 200 Ok is sent in response to a SP INVITE. The timeout is set waiting for the ACK
request. In case the acknowledgement does not armive, the session will be closed and the
resources freed (this behavior is achieved invoking the timeout() method inherited from the
TimerTask clasy.

e ChatService: The ChatService class manages the signaling related to the setup of a chat
sesson. This is the only conmmmication dass (the others are PresenceService,
InstantMsgService and Voip) that may have nuitiple objects instantiated. The reason why
this class does not follow the singleton design pattem is that up to four chats may be open at

60

atime. Each chat is managed by one ChatService object. The CommonFunctions class keeps
track of the number of already open sessions and of those that may il be set up.

The methods of the PluginComnector interface related to a chat comnmumication map in
methods of the ChatService cdlass. The chatlnitiateSession() method inwvokes the
openSession() method on the ChatService cdass The same happens with the
chatAcceptSession() and the chatCloseSession() methods, that map on the acceptSession()
and on the closeSession() methods. The instance of the ProviderDistributor class is called
from this class because signaling messages are sert from here over to the SP stack

The only method of the PluginConnector interface that does not map onto the ChatService
class is the chatSendMessage method. The InstantMsgService class, as we shall see, manages
this method.

Incoming requests and responses must be seit to the related ServiceCormector
implementation. The ServiceConnector interface extends the EChatControlListener interface.
Each chat object has its EChatControlListener. The value of the listener may be set in two
cases, when chat setup SP INVITE is sent or when it is received. The CommonFunctions
class has the role of assigning the appropriate listener to the chat object. In case a request is
received, this is set checking the ServiceName header valve and irwoking the
addChatServiceControlListener() method on the object. When arequest is sent, a reference to
the service that is sending the request is passed, so the mechanism is the same as the last
described.

The management of incoming ISP MESSAGES related to a chat session is asymmetric with
respect to the management of outgoing ones When the session is setup suocessfully, an
EMessageListener listener is bound to the chat object. If a SP MESSAGE recognized as part
of a chat exchange is received, the messageReceived() method is irvoked on the chat object.
The chat object then processes the message and forwards it to its EMessageListener. The
EMessageListener and the EChatControlListener are typically the same.

InstantMsgService: The role of this class is that of managing SP MESSAGEs The
PluginConnector’s interface methods chatSendMessage() and sendMessage() are mapped on
the InstantMsgService’'s method sendIM(). This class has been designed following the
singleton design pattern, just as for the CommonFunctions class, only one instance may be
referenced.

Unlike a ChatService object, that must be able to forward all messages to the same
EMessageListener, consecutive messages may be meant for different services. This is why
this class does not offer the possibility of assigning it a message listener. The appropriate
listener is assigned on a per message basis. The CommonFunctions instance recognizing that
aSP MESSAGE is not tied to a chat, checks its ServiceName header value and passes it in
the messageReceived() method of the InstantMsgService instance. SP MESAGESs that are

typically processed by this class are push messages. In the Rolegames service, for example,
the players cards are received by this means.

PresenceService: This class manages the receipt of SP NOTIFYs. At the same tine, it is
responsible for the publishing of the user’s presence information and for the subscription to
the buddies user information.

A paticdar service may require or not that a subscription to the buddies presence
information is performed. This action may be triggered or not by the set to true or false of an
attribute in the XML document. If the subscription is required, a SP SUBSCRIBE is sent for

61

every buddy stored in the buddy list. On the receipt of a SP SUBSCRIBE, the Presence
Server sends SP NOTIFYs to the watcher. The CommonFunctions instance maps SP
NOTIFYs on the notifyReceived() method of the PresenceService instance. The
notifyReceived() method is irvoked as mary times as the rumber of services the presentity is
registered to. If a buddy is presert in the Rolegames and ECity's buddy lists, the
notifyReceived() method will be called twice, once for each service. The notifyReceived()
takes a parameter of type ServiceCormector. The notifyReceived() method is then called on
the ServiceConnector reference passed as parameter.

The PluginCommector's method publish() is mapped on the PresenceService’s publish()
method. The XML information is set in the CommonFunctions method, as already
explained in one of the previous chapters. The PresenceService publish() method sends the
information in a SP REGISTER request to the Presence Server. The Presence Server does
not understand the SP PUBLISH method but understands SP REGISTERs. This behavior
is not compliant with the latest RFCs.

53 Exploit Plug in Message coding

How messages are coded is explained in this chapter. The messages are compliant with
the SP standard, but in order to support services some new coding rules have been introduced.
The capabilities that are supported by these rules are:
¢ Userdlias
e Buddy lists;
e Mutiple active applications on the client;
¢ Messages sent within a session.
The service names are coded as follows (user part of SP URI: user@ donain):
e fantacalcio;
* roleganes
e ecity.buddyfinder;
e ecity.carsharing,
Buddyfinder and Carsharing need the “ecity” preposition, since they are part of the same suite of
services.

531 SIPINVITE

Here follow two examples. The first shows a SP INVITE sent in order to setup a call,
and the seoond a SP INVITE sent to setup a chat. Both of these messages carry a text message,
an image and a sourd clip. In the set up of a session, the image and the sound clip are meant as
an improvement to the mere ringing of a phone. The user that receives an invitation will see the
image on the display and hear the sound clip, instead of a regular phone ringing.

The only rule that has been applied to the Voip call SP INVITE is the set of the
ServiceN ame to voip. Other headers follow the SP standard.

¢ Voip session irvitation example
From userO1 (pippo) to user2 (pluto):

SIP INVITE sip:user02@h3g.it SIP/2.0
From: <sip:user0l@h3g.it>

62

To: <sip:user02@h3g.it>

Subject: whatever

Call-ID: 847yfbwgeu24@20.20.20.20

CSeqg: 4 INVITE

FromAlias: pippo

ToAlias: VOIP_USER

ServiceName: voip

ContentType: multipart/mixed;boundary="jksjhaadurgf245rt”
ContentLength: xx

——Jjksjhaadurgf245rt
Content-type:text/plain
——Jjksjhaadurgf245rt
Content-type:image/jpeg; name="image. jpg”
——jksjhaadurgf245rt
Content-type:audio/au;name="yell.au”
——Jjksjhaadurgf245rt
Content-type:application/sdp

v=0

o=user01@h3g.it 4384957385 4384568930 IN 20.20.20.20
s=SIP

c=IN IP4

t=0 0

m=audio 5070 RTP/AVP 3

a=rtpmap:3 GSM/8000

This SP INVITE has been sertt to irwite a challenge to rolegames player. For this reason the
ServiceName's header value must be set to “rolegames’. The subject may be significant to
identify the kind of game that will be played. In this case, userO1 wants to fight userO2.

This message carries a SDP body. SDP bodies are necessary to setup chat sessions as well as to
setup voip sessions. The most important information carried by the SDP body isits “m” (media)
line:

m=message 5060 sip:user09@h3g.it?Call-ID=847yfbwgeu24@20.20.20.20

The first parameter tells by which means media will be sent. In this case, the “message” value
means that the exchange of media in the chat session will be done by SP MESSAGEs. The
second parameter sets the port on which SP MESSAGEs will be listened to by the sender of the
SP INVITE. The third parameter contains the Call-ID that must be set in the ISP MESSAGEs.
The dient that sends the invitation knows the Call-ID that nmust be expected for the SP
MESSAGEs belonging to the chat.

e Chat service related invitation example
From userO1(Dragone) to userO2(Elfo) of rolegames service:

SIP INVITE sip:user02@h3g.it SIP/2.0

From: <sip:user0l@h3g.it>

To: <sip:user02@h3g.it>

Call-ID: 847vyfbwgeu24@20.20.20.20

CSeq: 8 INVITE

Subject: Battle

FromAlias: rolegames.Dragone

ToAlias: rolegames.Elfo

ServiceName: rolegames

ContentType: multipart/mixed;boundary="7jksjhaadurgf245rt”

63

ContentLength: xx

——Jjksjhaadurgf245rt
Content-type:text/plain
—-—jksjhaadurgf245rt
Content-type:image/jpeg; name="image. jpg

”

——Jjksjhaadurgf245rt
Content-type:audio/au;name="yell.au”
——jksjhaadurgf245rt
Content-type:application/sdp

v=0

o=user01@h3g.it 0 0 IN 20.20.20.20

s=SIP

c=IN IP4

t=0 0

m=message 5060 sip:user09@h3g.it?Call-ID=847yfbwgeu24@20.20.20.20

A simple chat between two users will have the ServiceName value “peer2peer”. The
CommonFunctions knows from this header that the irwitation is not meant within a service
(Rolegames, Fantacalcio, ECity). The ServiceSupport instance will manage this irvitation.

e Peer2peer chat invitation example
From userOl(pippo) to userO2(pluto):

SIP INVITE sip:user02@h3g.it SIP/2.0
From: <sip:user0l@h3g.it>

To: <sip:user02@h3g.it>

Call-ID: 847vfbwgeu24@20.20.20.20
CSeq: 12 INVITE

Subject: hello

FromAlias: pippo

ToAlias: pluto

ServiceName:peer2peer

ContentType: multipart/mixed;boundary="jksjhaadurgf245rt”
ContentLength: xx

——Jjksjhaadurgf245rt

Content-type:text/plain

——jksjhaadurgf245rt

Content-type:image/jpeg; name="mypicture. jpg”
——Jjksjhaadurgf245rt

Content-type:audio/au; name="greetingsmessage.au”
——jksjhaadurgf245rt

Content-type:application/sdp

v=0

o=user(01l@h3g.it 0 0 IN 20.20.20.20

s=SIP

c=IN IP4

t=0 0

m=message 5060 sip:user09@h3g.it?Call-ID=847yfbwgeu24@20.20.20.20

532 SIP MESSAGE

The SP MESSAGE has been used in several ways in the project. A SP MESSAGE may
be sent as a standalone message from a user to another. It may be sent within a chat session. It is
used to conwvey information from the system to the terminal and the other way round. The
different meanings that a SP MESSAGE may assune led to differente coding conventions.

64

Here follows an example of a SP MESSAGE, sent from the Fantacalcio service to a user. This
kind of message is a push message that stores general information about the service. The
information may be of any kind; in this casg, it tells the user when the championship will begin.

e Service server message example
From fantacalcio service to a userO2(fantacalcio.private. H3G.Milan):

SIP MESSAGE sip:user02@h3g.it SIP/2.0
From: <sip:fantacalcio@h3g.it>

To: <sip:user02@h3g.it>

Call-ID: 4837543250@20.20.20.20

CSeqg: 456 MESSAGE

Subject: News

ToAlias: fantacalcio.private.H3G.Milan
ServiceName: fantacalcio

ContentType: text/plain

ContentLength: xx

The new championship will begin next Monday.

The following IM has been exchanged by two Fantacalcio players. Since the IM is sent within the
game, the ServiceN ame is set to “fantacalcio” . The FromAlias and the ToAlias headers are set to
the player’s teams.

e Service related instant messaging example
From wserOl(fantacalcio.private H3G.Inter) to userO2(fantacalcio.private. H3G.Milan) for
fantacalcio service:

SIP MESSAGE sip:user02@h3g.it SIP/2.0
From: <sip:user0l@h3g.it>

To: <sip:user02@h3g.it>

Subject: Team

FromAlias: fantacalcio.private.H3G.Inter
ToAlias: fantacalcio.private.H3G.Milan
ServiceName: fantacalcio

ContentType: text/plain

ContentLength: xx

<team info>

</team info>

Exploit users may communicate out of a service. They may use the basic features offered by a
chat room. This message has sent within a chat session. The ServiceN ame header must be et to

“peer2peer” in this case.

e PeerZpeer instant message example
From userOl(pippo) to userO2(pluto) for a nonmal instant messaging service:

SIP MESSAGE sip:user02@h3g.it SIP/2.0
From: <sip:user0l@h3g.it>

To: <sip:user02@h3g.it>

Subject: weather

FromAlias: pippo

ToAlias: pluto

ServiceName: peerlpeer

ContentType: text/plain
ContentLength: xx

What a nice day!

65

533 SIPNOTIFY

The PresenceServer sends SP NOTIFYs. The PresenceServer listens to SP PUBLISHSs
sent by presentities (in fact, presence information is sent in SP REGISTERs; the Presence
Server is not compliant with the latest SP standardy and forwards the information they contain
to the wser's watchers. SP NOTIFY's may be meant for the Exploit client or for the J&ti client as
well. This may happen because a buddy may be set in both an Exploit's buddy list and in the
Jeti's buddylist. This is the reason why SP NOTIFYs are aways managed by both the
applications. Moreover, the CommonFunctions class must remember the Exploit's buddies SP
URIs, in order to deliver SP NOTIFYs to the Exploit services. This mechanism is necessary
becaure it is not possible to modify the behavior of the Presence Server, which must be taken as
it is. No changes that might simplify the processing of SP NOTIFY's in the client have been
possible.

534 SIP REGISTER

SP REGISTERSs are sent for two purposes: in order to register with the Registrar and in
order to send presence information. The registration is performed when accessing to the IMS.
Presence information is sent in the body of the SP REGISTER message, in an XML format.
The first valve in the XML document tells where its namespace is defined. The “basic
value=open” line means that the user is registered in the IMS. Media types tell which services the
user is regjstered to. In this case, the user is registered only to the Rolegames service, among the
Exploit services. The name of the character he is registered with is “Elfo”.

SIP REGISTER sip:user02@h3g.it SIP/2.0

From: <sip:user0l@h3g.it>

To: <sip:user0l@h3g.it>

Call-ID: 4837543250@20.20.20.20

CSeqg: 456 REGISTER

Contact: <sip:user01@h3g.it:5060>

Accept: application/sdp, text/plain, multipart/mixed
Expires: 3000

Content-Type: application/xpidf+xml

Content-Length: ..

<presence xmlns=http://www.ietf.org/ns/cpim-pidf-xml-1.0>
<tuple id = “devicel”>

<status>

<basic value="open”/>

<media type="voice”>open</media>

<media type="instant message”>open</media>

<media type="chat”>open</media>

<media type="games/rolegames”>open</media>

<mood type="online” />

</status>

<note>rolegames.Elfo+</note>

<timestamp>Tuesday Jul 22 16:21:34 2003<timestamp/>
</tuple>

</presence>

66

54 CommonPlugin interaction with the GUI
The ConmmonPlugin module must interact with the services' graphical user interfaces.
The ServiceConmnector and the PhuginCornector interfaces support conmumnication among the
GUI's and the CommonPlugin module.

A service must implement the ServiceConnector interface. Four dasses that implement
this interface have been defined: Rolegames, Fantacalcio, ECity and ServiceSupport.

The ServiceSupport class follows the singleton design patterm. The ServiceSupport dassis
always created, even if no other service is open. The existence of this object doesn't depend on
the “servicesconf.txt” configuration file. The main tasks of this class are twi:

e Manages advanoced peer2peer conmumication (i.e. audio call, chat and IMg characterized by
INVITEs with images and ring tones and alias support;
¢ Service GUIs control (activation of service GUI's and switching between services).

The other ServiceCormector implementations (i.e. Rolegames, Fantacalcio, ECity) manage the
GUI and logic of their specific services.

The Exploit Client start and show is commanded by the J&ti GUI and executed by the
CommonPlugin module in the CommonPlugin class. When the user clicks on the show button,
the Exploit Welcome Page appears. The ConmmonPluginGUI class has been defined; its instance
is in charge of the common graphical components and their behavior. These components are the
Exploit Main Window, the Peer-to-Peer windows and the Bottom Panel. The Exploit Main
Window is the first window shown when accessing the Exploit client (an example is depicted in
Fig. 6.3). Peer-to-Peer windows are in charge of the user interfaces of the IM, Chat and Voip
conmumication services (this is performed trandating graphical events into PluginCornector's
methods and SP events into graphical events). The bottom parel is always visible and does not
change when using the Exploit client. Its behavior is very similar to that of the menu bars on the
bottom of the GUIs of some popular OSs, such as Windows or Linux. The bottom panel lets the
user switch between the services GUIs. The ConmmonPluginGUI listens to the graphical events
originated by the Bottom Panel.

Fig. 5.6 makes clear how the ConmonPluginGUI and the ServiceSupport class interact with the
CommonPlugin module. Services are instantiated in the CommonPlugin module (in the
CommonFunctions instance after the servicesconf.txt file is read). The same happens for the
ServiceSupport instance. The ServiceSupport instance controls the CommonPluginGUI object,
which listens for graphical user events from the Bottom Panel and from the Peer-To-Peer
windows. The interaction between the ConmonPluginGUI events and the CommonPlugin
module is managed by the ServiceSupport instance, as far as the opening of the application and
peer-to-peer commumnications are concemed. When the GUI of Rolegames, ECity or Fantacalcio
is accessed or when SP events are related to one of the services the control is shifted to the
services implementation. The interaction between the service and the CommonPlugin module is
no more managed by ServiceSupport. The Rolegames, Fantacalcio or ECity GUIs are accessed
clicking on one of the buttons of the bottom panel. A SP event related to one of the services

may be the arrival of a push message, for example.

67

JETIGUI

T
CommonPluginGUI
7 D%
QR

RolegamesGUI ECityGUI FantacalcioGUI
RolegamesButton

controls oWs
ECityButton Shews
s s
FantacalcioButton

ServiceSupport

Peer2Peer
communication

starts /[shows

‘Rolegames ‘ ‘ ECity ‘ FantaCalcio

O

Service
Connector
iates instaptiates

O

Plugin
Connector

shd

CommonPlugin

Configuration
llantacalcio
-olegam es

‘city

Fig. 5.6 CommonPlugin interaction with the GUI components

68

ServiceSupport

controls
Common features to .
all services! ommonPluginGUI

ExploitMainW indow Peer2PeerWindow

]

WelcomePage ControlPanel Peer2PeerPage

Fig. 5.7 CommonPluginGUI components

The relationships between panels and pages are illustrated in the following diagram. The diagram
also includes the class Mind which is responsible for controlling the loading and unloading of
pages on the Top panel.

DN

\

ServicePage

ControlPanel

J\ / \\
1

CallButton eCityButton
ChatButton RoleGamesButton

RolegamesPage eCityPage

IMPage FantacalcioPage

ChatPage

CallPage

IMButton FantacalcioButton

Fig. 5.8 The Mind dass

541 The Mind class
The Exploit client window has been divided into a Top Panel and a Bottom Panel. The
bottom panel is fixed; it never changes while using the client. The Top Panel view changes,
depending on which service is used. Each service (Fantacalcio, Rolegames and ECity) can have
ten pages that compose its GUI. If a user visits every single page of a service for each service,

69

and these pages are never destroyed this would lead to performance isstes. The Mind class sets a

criterion by which pages are loaded and unloaded into memory. The Mind rules are:

¢ No more than two pages per service can be loaded (current page and previous seen page);

e When the user moves from servicel to service2, the last page of servicel is saved;

e The loading of new pages forces the unloading of older pages.

A unique number, an index, identifies all Exploit pages. The index of each page belongs to a

service specific range that is commumicated to the Mind instance during service registration. The

following addressing spaces have been defined:

e 1-10 for ConmmonPluginGUI;

¢ 11-20for Rolegames;

e 21-30for Fantacalcio;

e 31-40f{or ECity.

The Mind class through the Servicelnfo class stores information regarding the GUIs This

information is:

e The object reference of the class which implements ServiceConnector interface (e.g.
Fantacalcio, ServiceSupport);

¢ The name of the service;

e The last page shown for that service;

e The lower boundary of service page range;

¢ The upper boundary of service page range;

¢ The user's dlias within that service.

The Peer dass stores the information about the last buddy selected by the user for Peer2Peer
commmunication. This information is managed by Mind. The datais:

e The SP URL of the buddy;

e The alias of the buddy.

Mind Pagelnfo

=pagelnfo[4] : type = initval ®ppagelD : type = initval
& senicelnfo[4] : type = initval ®ppageStatus : type = initval
&ppeer : type = initval

*register() _

*showCurrentPage() P Sobiooth fSer\/lceIr?fto —
&hgetLastPage() jectReference : type = initva
&isLoaded) &plastPage : type = initval
&vgetPageToUnload() - SpseniceName : type = initval

%setHomePage() { &lowerBound : type = initval

*showNextPage() h &upperBound : type = initval
&bgetActualPage) & myAlias : type = initval

$setMyAlias() T

$setPeer()

*getMyAlias() 1

$getPeer()

*showPage() S

$getPageStatus) &psipUrl : type = initval
setlastPage() &palias : type = initval

Fig. 59 The Mind dass diagram

The following public methods of the Mind instance can be invoked by the GUIs for page
navigation:
70

public void showCurrentPage (String serviceName) throws UnknownService:
this method allows moving between services through graphical user events on the
ControlPanel;

public void showNextPage (int pageNumber) throws UnknownPage!ﬂiSIHﬁhOd
permiits switching between the pages of a service;

public void showPage (int pageNumber) throws UnknownPage: this method shows
aservice page when a SP message arrives.

Any updates of the top panel, i.e. any change on the active page, must be controlled by Mind. A
new page is always requested to Mind using one of three methods defined above.

Other public methods are:

public void register (String serviceName, Service serviceReference, int
minPage, int maxPage) : this method pI'OVldESNIlIld\MﬂlSEIVlCG information;

public void setHomePage (String serviceName, int pageNumber) : this method
sets the Exploit Plugin home page (i.e. ExploitMainWindow);

public int getPageStatus (int pageNumber) throws UnknownPage: this method
retums the status of a page. The values that may be retumed are Pagelnfo.VISBLE (2),
Pagelnfo.HIDDEN (3), or Pagelnfo.UNLOADED (0);

public wvoid setMyAlias (String serviceName, String alias) throws
UnknownService,

public String getMyAlias (String serviceName) throws NoAlias;
public void setPeer (String sipUrl, String alias),

public Peer getPeer () throws NoPeer.

542 The GUI class
The GUI dass defines an interface between Mind and the service implementation; it so

defines how Mind and a service nmust interact. All services must extend this class.
For example, Fantacalcio is defined as follows:

public class Fantacalcio implements ServiceConnector extends GUI {

private Fantacalcio (PluginConnector pluginConnector, Mind mind);

public static Fantacalcio getInstance (PluginConnector
pluginConnector, Mind mind);

// Service Connector methods
// GUI methods

The GUI class allows storing:;

The service name (serviceName);
The current Buddy List;
The presence information about buddies.

The following public methods have to be implemented by each service:

public void showPage (int pageNumber) ;

public void loadHomePage () ;

public void loadPage (int pageNumber) ;

public void unloadPage (int pageNumber) ;

public void hidePage (int pageNumber) ;

public wvoid setCallID (String callID): the <callID generated from a
service page is stored;

71

public boolean checkCallID (String calllID): to verify if messages refer

to the same SIP dialogue;
public void setBL (List list);

public void setPresence (String sipUrl, String alias, String status);
public List getBL (List list);
public PresencelInfo getPresence (String sipUrl, String alias, String
status) .
GUI
erviceName : type = initva
howPage() BLPresence
oadHomePage()
oadPage() oo
—~
Q lnloadPage()
) idePage()
Service etCalllD() > _ED
Connector heckCallD()
/\ \ etBL()
A | etPresence()
‘e‘ etBL()
| etPresence()
| eep()
J 4 T
| J,T,
e‘ /
3 \ /
ServiceSupport Fantacalcio Rolegames ECity

Fig, 5.10 The GUI dlass diagram

55 Exploit Service example
The following paragraphs show how the CommonPlugin module works. The Rolegames

service has been chosen for the examples.

551 Rolegames challenge request and succeed

The main classes that take part in this scenario are:

¢ RolegamesGUI.: this class must be a graphical evert listener;

¢ CommonFunctions: this class implements the PluginCormnector interface.

When the user sends a challenge to a peer through a button present on the GUI, this will trigger
the specific service’s class (in this case RoleGamesGUI) to invoke the chatInitiateSession on the
PluginCormector object. The chatl nitiateSession maps upper level related actions on the INVITE
SP message of the protoool stack and must therefore contain all the information necessary to
send the INVITE (this information is passed through the method's parameters and is
represented by the message’s recipiertt, its subject and body).

The 180 Provisional Response is mapped on the chatProcessRinging method of the Rolegames
instance. The 200 Final Response is mapped on the chatOpenSessionSucceed method of the

72

Rolegames instance. If the final response were not a successful one, the chatOpenSessionFailed
would be irvoked. Once the session is established, the exchange of cards may start.

73

X

‘ : User

- JAN provider : SipProvider : ProviderDistributor : CommonFunctions chati : ChatService rolegame : RoleGames start challenge gui : Role
E— Games
startChallenge()
initiateSession(Sound, Imagelcon, String, String|, Object, String)
ChatService(boolear

VITE()

processResponse(SipEvent)

chatControlListener(|

openSession(Attachment| String, Object)

ChatControlListener)

sendRequest(Request, ServicePlugin)

180 ringing

processResponse(SipEvent)

:uucmﬂesponse(SipEve% o .
inviteResponseRecei

ed(SipEvent)
processRinging(String)

processResponse($ipEvent)

200 ok

ACK()

sendA

inviteResponseReceived(SipEvent)

k(long)

Fig. 5.11 Rolegames chdllenge request and suooeed

openSessionSucceed(Stri

ringing()

ringing()

ng)

session open()

session open()

1

74

552

Rolegames challenge invitation and acceptance

The CommonFunctions object filters incoming requests and decides whether they
nmust be dispatched to its services or not. If the request must be delivered to the Rolegame
service the sessionlnitiated() method is irvoked on the Rolegames's instance. The activation
of awindow and the playing of the audio clip carried in the INVITE will tell the user about
the invitation receipt. The user will be able to refuse or acoept the invitation. If the acoept
button is clicked, the acceptSession method is irvoked on the CommonFuntions object
acting in this case as PluginCormector.

- JAIN : Provider : Common chat1 : Chat rolegame : Role popup w challenge :
Distributor Functions Sernvice Games RoleGames
| nvire | | \ \ \
M > |
processReq uest(SipE‘vent) ‘ ‘ ‘
getService() ‘ ‘ \
- 1| | |
\
message filter ‘ ‘
|
inviteRequestReceived(rolegame) ‘ ‘
sessionlnitiated(String, Imagelcon, Sound, String, String) ‘
] |
popup window for challenge request
Tre
\ |
L | |
180 T sendRegponse() ‘ él ickon Accept buttol

< | | |

|

|

|

o

acc

eptSession(boolean, String)

sendRes?onse()

acceptedinvitation()

D
|
|
|
|
|
|
|
|
|
|

|

Fig. 5.12 Rolegames challenge invitation and acceptance

76

56 GUI related sequence diagrams
The following sequence diagrams are intended to explain through some examples

how service GUI's and CommonPlugin interact each other.

561 ExploitPlugin start
The ExploitPlugin can be started by selecting “ Exploit Client” among the available

plug-ins listed in ETT and clicking on the “Start” button.
When CommonPlugin module is started, it performs the following tasks:

It initializes internal object and cormects to the protocol stack;
It instantiates the Mind class;
It creates the ExploitMainWindow which is composed of two containers:

— Top level container that can be used by service GUI's with the restriction that
only one service page can be visible at a time: at the begirming a welcome page
is showny

— Lowlevel container which shows the CorntrolParel; it allows:

& Performance of advanced peer to peer communication independently
from service GUIs: audio call, multimedia chat and instant messaging;
& Activation and movement between service GUIs.
It instantiates, based on the settings read from a configuration file, the classes (i.e.
Rolegames, ECity, Fantacalcio) which implement the service GUI and logic. A reference
to the CommonFunctions instance is passed as paramreter, this object implemernits the
PluginCormnector interface that is necessary to start a commumication from the service.
The reference to the Mind object is also passed as input parameter in order to allow
services to interact with Mind. When a service is instantiated (service constructor
method), it registers to Mind and it passes it its reference and the range of its pages;
It registers the plugin in the Jti envirornment;
I't creates and keeps tables for commumication and dispatching purposes.

77

- JETI GUI : Common : Provider : Configuration : Mind : Senice : RoleGames : FantaCalcio
Eunctions Distributor Support

1: startPlugin() ‘ 2: get() ‘

3: Fantacalci@, RoleGames

4: new()

|
|
\
5: new(plugin(;wnector, mind)/l—H
|

6: register("common”, this, 1, 10)
7:

\
|
\
|
11 ‘
|
\
|

8: new(pluginConnector, mind)

| 9: register("rolegaﬁwes", this, 11, 20)

10:

| I
11: new(pluginConnector, mind)

I |
12: register("fantacalcio”, this, 21, 30)

14: registerPIu‘gin()
15:

| 13: |

X 16: creates internal table:
17: ; |

|
|
|
|
|
|
|
|
|
%	
\ \ \

Fig. 5.13 Start of the Exploit application

562 ExploitPlugin show
When the user requests by clicking the “Show” button of JETT GUI, the show method is
irvoked on ConmmonPlugin that in tum irvokes loadHomePage () method on
ServiceSupport.
A new window is created which shows the Exploit Welcome Page on the Top panel and the
ControlPanel on the Bottom.
‘When ControlParel is instantiated the reference to PluginCormector and to Mind are
provided.

78

- JETI GUI : Common : Senice exploit main window : Mind page (1) : : ControlPanel
Functions Support : CommonPluginGUI WelcomePage

1: showPlugin() ‘ | ‘
2: loadHomePage ()

| | |

3: createWindow("E;(ploiMainWindow") ‘ ‘ ‘

& | | |

5: new() | | ‘

6: setHomePage (“‘Common", 1) /U‘ ‘

- | |

9) 8: new(plugi‘nConnector, mind) !
| | T

10: ‘ ‘ ‘
1 | | |

| | | |

| | | |

| | | |

| | | |

Fig. 5.14 Show of the GUI of the Exploit application

563 Service activation from the Control Panel

The following diagrams illustrate two examples of activation of a service by clicking
the associated icon/button on the ControlPanel.

79

A

- User : ControlPanel : Mind : FantaCalcio page (21) : : Senice : Welcome
—=ser FantacalcioPage Support Page

‘ 1: user clicks "Ifantacalcio" button ‘ ‘ ‘ ‘

2: showCurrentPage ("Fantacalcio”) Page (21) is last page
! ! of Fantacalcio

3: getActualPage
. e] e ge() -

-
\ — ‘
4: getLastPage ("Fantacalcio”
IF actual page is not equal \21 :l 9 ge ()
to last senice page THEN | || = — J’» -5: hidePage(1) ‘ ‘ 6: hide() o
hidePage is invoked ‘ ‘ 7: setVisible(false)

‘ 9: 8: :

|
true ; 10: isLoaded(21) . ___

|
11: showPage(21)

|

I

‘ If new page is already

—|loaded then NO page

| |has to be unload! T

\ |
\
|
\
|
\
|
\
|
\
|

) |
15: 14: ; 13: setVisible(true)

17: 16:

Fig. 5.15 Activation of the Fantacalcio GUI

80

x

U ‘ : ControlPanel : Mind ‘ ‘ : RoleGames page (11) : ‘ : FantaCalcio page (22) : page (21 :
: User) ~
RolegamesPage FantacalcioPage FantacalcioPage
] \ \ \ \ \ \
1: user clicks "Rol‘egames" button ‘
2: showCurrentPage ("Rolegames") ‘ ‘ ‘ ‘ ‘
| \ \ \ \
3: getActualPage()
22 ;
\ | | | |
IF actual page is not equal null ; 4 getLas‘tPage("Rolegames")‘ ‘ ‘ ‘
| i THEN ;
L?d:;tazzrgcienv%i%ed — 7~ |5 hidePage(22) | | hide() | |
f f 7: setVisible(false)
| = | & < \
10: IoadHomePag‘e () ‘
Home page of 11: new(pluginConnector, mind)
Rolegames, page 12: [page (11)] T ‘
(11), is inserted in
loadedPages ‘ T ‘ ‘
21 :| 13: getPalgeToUnload() ‘ ‘ ‘ ‘
‘14: unIoadPage(21)‘ ‘ 15: ere 0 ‘
16: — ‘
18: E | | | U
| | | |
\ \ \ \
| | | |
1 \ \ \ \
| | | |
\ \ \ \

564

Fig. 5.16 Activation of the Rolegames GUI

N avigation through the service GUI pages

The following diagrams provide two example of navigation between the pages of a specific

service.

81

X

: User

page (21) :
FantacalcioPage

: Mind ‘ ‘ : FantaCalcio

page (22) :
FantacalcioPage

‘ : RoleGames

page (13) :
RolegamesPage

page (23) :
FantacalcioPage

|
l 1: user clicks "Next Page" (22) ‘

2: showNextPag? (22)

true

3: isLoadﬂed(ZZ)

4: showPage(22) ‘

5: show()

8:

7:

none

: User

9 getPaﬂeToUnload()

|
|
|
|
: 6: setVisit‘JIe(true)
|
|
|
|
|
|
|

L
11: 10
\ |
| |
U T | |
| | | |
| |
Fig. 5.17 Example of navigation through pages
page (21) : : Mind : FantaCalcio page (22) : : RoleGames page (13) :
FantacalcioPage FantacalcioPage RolegamesPage
|
7‘ 1: user clicks "Next Page" (22) ‘ ‘ ‘ ‘ ‘
é: showNextPage (Zé) ‘ ‘ ‘ ‘
isLoade | | |
3: isLoaded(22
false st T (©2) ‘ ‘
4:loadPage(22) ' 5 hew (pluginGonnector, mind)
6: ‘ ‘
| |
This g peis T ‘ ‘
E:dz jaf;oeg — 13 7: getPagFToUnIoad() ‘ ‘
| 8: unloadPage(13 | 9: free() ‘

11:

| 10:

13:

; 12: hide(this)

|
|
|
)|
|
I
|
|
|
|
|
|
|
|
|

Fig. 5.18 Example of navigation through pages

82

565 User registration

X

- User page (22) : : Mind : Plugin
I FantacalcioPage Connector

I
1: user provides registration info (alias)
2: ‘

T \

3: user clicks on "Register" button \

4: setMyAIias("fgntacalcio", "fantacalcio. private. H3G.Milan")

5:

6: publish()

Fig. 5.19 Registration to the Rolegames service

566 Chat with a buddy

- User page (3) : Chat page (24) : : ControlPanel : Mind : Plugin : Service : Fantacalcio :Common
— Page FantacalcioPage Connector Support Plugin
L 1: user selects a buddy in the buddylist

2: setPeer("user02@tre.it", "fantacalcio.private.H3G.Lazio")

4: 3:

5: user clicks on Chatlcon of GontrolPanel

6: getMyAlias("fantacalcio”)

7: ['fantacalcio.priviate.H3G.Milan"]

8: getPeer() T

9: [peer]

10: chatlnitiate Session()

11:[[128]

12: setCqlliD(123) 4

13:
14:
L] 15: chatSessionlnitiated()
L 16: checkCalllD(123)
17: showPjage (3)
24 Zl 18: getAgtualPage() h9: hidePage(24)
20: hide()
21: setVisible(false)
22:
23:

Page (3) has to be [=
inserted in loadedPages] false ;l 24:isLoaded(3) 5

25: loadPage(3)

26: new (pluginConhector, mind, myAlias, peer, callAccetpted, imagePath, soundPath, ...)

U\ 27:

none Zl 28: getPageToUnload()

29:

Fig, 5.20 Chat with a buddy

84

The diagram shows the entire step from peer selection, to chat invitation and acceptance.
Please, note that the peer is always the last selected buddy!

87 &va packages
The following packages contain Exploit client classes:

Package Content

exploit.client Classes of CommonPlugin

exploit.client.gui Classes of CommonPluginGUI and of support
for GUI

exploit.client.plugincormector Classes of interface PluginCornmector

exploit.client.servicecormector Classes of interface ServiceCormector

exploit.client.rolegames Classes for RoleGames service logic and GUI

exploit.client.fantacalcio Classes for Fantacalcio service logic and GUI

exploit.client.ecity.buddyfinder Classes for BuddyFinder service logjic and GUI

exploit.client.ecity.carsharing Classes for CarSharing service logjic and GUI

su@aveta padage

package exploit.client.serviceconnector

public interface EPresencelistener {
void notifyReceived (String sipURL, String alias,
String status) throws UnknownBuddy;
}

public interface EChatControlListener {
void chatSessionInitiated (String fromAlias, String

toAlias, String from, String subject, Image image,

Sound sound, String text, String callId);

void chatSessionClosed (String calllId) throws
UnknownCallId;

void chatProcessRinging (String callId) throws
UnknownCallId;

void chatOpenSessionSucceed (String callId) throws
UnknownCallId;

void chatOpenSessionFailed (String callId) throws
UnknownCallId;

}

public interface EMessagelListener ({

85

void messageReceived (String fromAlias, String
toAlias, String from, String subject, Image image,
Sound sound, String text) throws UnknownMessage;

void chatMessageReceived (String fromAlias, String
toAlias, String from, String subject, Image image,
Sound sound, String text, String callld) throws
UnknownCallId;

void sendMessageFailed (String to, String subiject,
String errorMessage);

public interface EVoIPControlListener {

void voipSessionInitiated (String fromAlias, String
toAlias, String from, String subject, Image image,
Sound sound, String text, String callld);

void voipSessionClosed (String callId) throws
UnknownCallId;

void voipProcessRinging (String callId) throws
UnknownCallId;

void voiOpenSessionSucceed (String callId) throws
UnknownCallId;

void voipOpenSessionFailed (String callId) throws
UnknownCallId;

public interface ServiceConnector extends
EPresencelistener,
EChatControlListener,
EMessagelListener,
EVoIPControlListener;

pluginconnector package

package exploit.client.pluginconnector

interface EChatControl {

void chatAcceptSession (String callld, boolean accept)
throws UnknownCallId;

String chatInitiateSession (String fromAlias, String
toAlias, String serviceName, String to, String
subject, String soundPath, String imagePath, String
text, ServiceConnector servicelmplementation)
throws ChatRoomsBusy;

public interface EMessageControl {
void sendMessage (String fromAlias, String toAlias,
String serviceName, String to, String subject,
String imagePath, String soundPath, String text);

void chatSendMessage (String fromAlias, String
toAlias, String serviceName, String to, String
subject, String imagePath, String soundPath, String
text, String callIld) throws UnknownCallId;

public interface EVoIPControl {

void voipAcceptSession (String callld, boolean accept)
throws UnknownCallId;

public String voipInitiateSession (String fromAlias,
String toAlias, String serviceName, String to,
String subject, String soundPath, String
imagePath, String text, ServiceConnector
serviceImplementation) throws SessionBusy;

interface EPresenceControl {
void publish (ArrayList openGames, String alias) throws
SyntaxError;

}

public interface PluginConnector extends
EChatControl,
EmessageControl,
EvoipControl,
EPresenceControl;

87

6. Audio Call Solution

The Voice over IP call is ore of the requirements for the Exploit client. The codec
that has been chosen for the exchange of media is the GSM codec. This choice has been
made because of its low bit-rate (13 kb/g), compared to the other available codecs. The
audio call is full-duplex; calls may be performed in a traditional phone call style.

I worked on the design and implementation of the signaling and of the exchange of
media. In the implementation, the Semens SP APIs and the Smple Media Framework
(SMIF) have been used. The SP APIs are the same that are found in the implementation of
the rest of the client. The SVIF APIs are a JVIF based solution for PocketPC 2002 powered
PDAs. The SMF and the JVIF offer the same interfaces at a high level. The difference
between JVIF' and SMIF is that SVIF maps somre java methods into DLLs that have been
designed specifically for the PDA (this result makes RTP transmission and voice capturing
possible).

61 Signaling
The signaling design may be seen from two points of view, the design of the state
machine that implements the call logic and the design of a flexible software pattern.
The state machine that has been used in the implementation of the call logic may be
seen in the following figure:

88

N
- . > INVITED
inviteResponseReceived() ———
TR B 7)7/)J7,,,,,,f——)f*"”"” |
’TO_CANCEL%:i:::;,,,,,@9§§§P§§19r1() [) |
- { INVITING \

f inviteResponseReceived() ~
|
inviteR “‘s onseReceived() ?QQ\
ef P r | inviteResponseRe ived()“‘
| PRI A |

|
|
|

TRYING } ;

h

|

|

‘.“‘ closeSession()
v

e N

L —AnviteResponseReceiy

ed) B \% FREE

equestReceived()

| a°kRequestReceivedo4 ACGEPTED
OPEN k pocered

o /

-

Fig. 6.1 State machine for an audio call

This state machine is the same that has been used for the chat session setup. The states are:
e Free: This is the starting point for the Voip machine. When the user starts the client no
phore call has been possible before, so the call setup begins in the Free state. Thisis also
the final state for all phone calls. It is possible to get back to the Free state in the
following cases:
— From the Inviting state:
& A Failure Response (3xx, 4xx, 5xx, 6xx) is received;
& No response is received before the timeout;
— From the Invited state:
& A SP CANCEL request is received before having sent a Final
Response;
& The received SP INVITE is not compliant with the message coding
expected by the client;
& The uwser refuses the invitation. The acceptInvitation() method is
called, passing it a FALSE value as parameter.

— From the Open state:

& The user hangs up the commumicationy;

& The secornd party hangs up the phone (a SP BYE isreceived).
— Fromthe Closing state:

&9

& If a success Final Response is received in reply to the SP INVITE
that has been sent, a SP BYE is sent and the transition to the Free
state is performed. If a Failure Response is received in reply to the
SP INVITE, the transition is performed directly. The first case
happens when the callee receives the SP CANCEL after having sent
the sucoess response. The second case happens when the callee
receives the SP CANCEL before sending the sucoess response.

— From the Trying state:

& If aFailure Response (3xx, 4xx, 5xx, GxX) is received.

Inviting: When in the Free state, the user is able to start a phone call. This triggers the
send of aS P INVITE to the called party. The Voip machine will be in the Inwviting state
aslong as no response has been received.

Invited: Begimming from the Free state, this state is entered when an invitation is
received. Until a response is sent, the Voip machine will be in this state (unless no
response is sent and a timeout is trigdered; this would result in going back to the free
state). It is possible to get to the Invited state from the Cancel state, but this transition is
much less common. This may happen if a user starts a phone call and hangs up
immediately. If the hang up happens when only Provisional Responses have arrived, the
client sends a SP CANCEL, assuming that the callee’s client has not had the time to
send a Final Response. If in the mearwhile a success Final Response arrives in reply to
the sent SP INVITE (this response is generated before the SP CANCEL arrives), the
SP CANCEL has no effect in canceling the session. The Voip machine moves to the
Invited state.

Accepted: The Accepted state may be accessed only from the Invited state. The
willingness to talk of the user triggers this transition. When the users click on the Acoept
button of the Voip GUI, the acceptInvitation is invoked on the Voip machine. The True
value for the passed parameter states that the invitation is acoepted (from a SP point of
view, this is trandated by sending a 200 Ok Response).

Trying: The Trying state may be from the Irwviting state. The arrival of SP Provisional
Responses triggers this transition. The arrival of nuitiple Provisional Responses keeps
the Voip machine in this state. A typical case is the arrival of a 100 Trying and of a 180
Ringing in sequence. The 100 Trying is the response sent by the proxy who forwarded
the request. The 180 Ringing is the provisional response serit by the callee’s client.

To Cancel: The ToCancel state represenis the state into which the Voip machine
transitions when the user tries to set a call and closes it before any response is received.
The closeSession() method is called before the arrival of a response. For this reason, this
state may be accessed only from the Inwviting state.

Closing: The Closing state may be accessed from the ToCancel state and the Trying
state. The transition from the ToCancel state happens when a provisional response to
the invitation request arrives. The transition from the Trying state happens if the user is
willing to close the session and 50 the closeSession() method is invoked.

Open: The transition to the Open state may happen starting the following states:

- Accepted state: This transition happens when the SP ACK is received from
the caller.

90

— Inviting state: This trandition is performed when a sucoess response (2x9) is
received.

— Trying state: This trandition is performed when a success response (2xx) is
received.

The software pattemn that has been chosen in the design of the Voip service is the
State pattem. The reason for this choice is the demand for keeping states and state-specific
behavior separated. Keeping states separated from their behavior means that improvements
may be made in a very easy way. If the behavior of one state changes, only one particular
class must be changed. This pattern has been chosen because the SP protocol is ill an
evolving protocol.

A Voip class has been defined. The singleton pattermn has been chosen for this class,
as for the other classes involved in the Voip implementation. The reasons are two: the target
platform for this solution is a PDA, and only one Voip session may be open at time. Since
only one Voip session may be open at time, there is no reason to keep nmuiltiple instances of
this class. The Voip instance stores the instance of the VoipState class. The VoipState class
defines an interface common to all classes that represent different operational states. The
subclasses of VoipState implement state-specific behavior. The signatures of the VoipState
class methods are:

® public void acceptInvitation (boolean accept);

® public void ackRequestReceived (SipEvent event);

® public void byeRequestReceived (SipEvent event);

® public void cancelRequestReceived (SipEvent event);

® public void closeSession();

® public void inviteRequestReceived (SipEvent event);

® public void inviteResponseReceived (SipEvent event);

® public void inviteTimeoutReceived (SipEvent event);

® public String openSession(String fromAlias, String toAlias, String
serviceName, String to, String subject, String soundPath, String
imagePath, String text);

® protected final void timeout ();

® protected void extractPeerIPAddress (String s);

® protected void extractPort (String s);

® protected void receivedMultiInvite (SipEvent sipevent,
ContentTypeHeader contenttypeheader);

® public void changeState (Voip voip, VoipState voipstate);

® protected void cleanUp().

91

Voip

%openSession()
#¥inviteRequestReceived()
#¥inviteResponseReceived()

¥acceptinvitation() VoipState
%closeSession()
%ackRe tReceived < Z7)
ques ece!ve O /@k
%byeRequestReceived() T\
%inviteTimeoutReceived() / “ \
%timeout() // A
| \
| \
_state.openSession() //‘ | \
/f \
| \
A
// \
| \
| \
[\
‘ \

VoipToCancel

VoipFree VoipTrying VoipOpe// Voiplnviting ?(//oipCIosing

/
/
/
/
/

Voiplnvited

VoipAccepted

Fig. 62 Voip dlass diagram

All the above methods, except the last four, are implemented in the Voip class too. The
Voip dlass attribute _state, of type VoipState, has the role of storing the current state of the
Voip machine. When Voip dass is instantiated for the first time, the _dtate attribute is
initialized with the instance of the VoipFree class. Depending on the methods that are

invoked on the Voip instance the _state attribute changes its value. The result is that the
same method but in different classes is irvoked. This behavior may be understood by the

implementation of the Voip dlass, that is here shown.

The Voip dass extends the TimerTask class, as mentioned in the previous chapter.

public class Voip extends TimerTask

{

The constructor has been declared private, in order to achieve the singleton behavior. Here
all possible states are initialized and the _state attribute is set to Free.

92

private Voip ()

{
VoipAccepted.getInstance();
VoipClosing.getInstance();
VoipInvited.getInstance();
VoipInviting.getInstance () ;
VoipOpen.getInstance () ;
VoipToCancel.getInstance () ;
VoipTrying.getInstance () ;
_state = VoipFree.getInstance();

}

public static synchronized Voip getInstance () {
if (_instance == null)
_instance = new Voip () ;
return _instance;

}

The openSession() method is not implemented here. The implementation that is irvoked
depends on the state of the Voip machine. We have seen above which are the allowed
transitions in the Voip machine. If a not allowed transition is invoked, an exception is
handled. The only allowed transition starts from the Free state. In all other cases a new
Exception (“Session is in use")VWﬂlX?ﬂHO“Kl

public String openSession(String fromAlias, String toAlias,
String serviceName, String to, String subject, String
soundPath, String imagePath, String text) throws Exception
{
return _state.openSession(fromAlias, toAlias,
serviceName, to, subject, soundPath, imagePath, text);

}

The closeSession() method launches no exceptions if called on an illegal transition, it simply
does nothing in that case. This happens when the _state variable stores one of the instances
of the following classes: VoipFree, VoipClosing, VoipT'oCancel.

public void closeSession()
{
synchronized (this)
{
_state.closeSession();

}

The aooeptIrNitaﬁon() throws a new Exception (“Object not invited”) in all states,
minus the Voilnwvited state.

public void acceptInvitation (boolean flag)
throws Exception

{
if (VoipState.inviteEvent != null) //INVITED
{

_state.acceptInvitation(flaqg);

93

}

Nothing is dore if the inviteResponseReceived() method is irvoked on the Voiplnvited,
VoipAccepted and VoipOpen instances. All other cases are managed following the machine
state logic.

public void inviteResponseReceived (SipEvent sipevent)

{

_state.inviteResponseReceived (sipevent) ;

}

If the byeRequestReceived() method is invoked out of one of the VoipAccepted and the
VoipOpen states, a 481 Transaction Does Not Exist failure response is retumed to the
sender of the SP BYE.

public void byeRequestReceived (SipEvent sipevent)

{

_state.byeRequestReceived (sipevent) ;

}

The inviteTimeoutReceived() method does nothing in all states, with the exoeption of the
Voiplnviting state. The SP stack irvokes this method, when no response is received for the
sent request.

public void inviteTimeoutReceived(SipEvent sipevent)

{

_state.inviteTimeoutReceived (sipevent) ;

}

The only state that manages an irviteRequestReceived() without replying a 486 Busy Here
response is the VoipFree state.

public void inviteRequestReceived(SipEvent sipevent)

{

_state.inviteRequestReceived (sipevent) ;

}

The cancelRequestReceived() method is managed only by the Voiplrvited state. In all other
cases a 200 response is returmed.

public void cancelRequestReceived(SipEvent sipevent)

{

_state.cancelRequestReceived (sipevent) ;

}
Nothing happens irvoking the following method, with the exception of the VoipAccepted
date.

public void ackRequestReceived(SipEvent sipevent)

{

_state.ackRequestReceived (sipevent) ;

}

94

The timeout() method is irvoked when a SP ACK does not arrive in the given time. The
invocation of this method takes the Voip machine in the VoipFree state.

public final void timeout ()

{

_state.timeout () ;

}

public boolean isFree()
{
if (_state instanceof VoipFree)
return true;
return false;

}

The classes that implement states invoke the following method on the Voip instance in
order to control its state transitions.

protected void changeState (VoipState vs) {
_state = vs;

}

This method is inherited from the TimerTask class. It is invoked when setting the timeout
for the ACK arrival.

protected void setScheduleTime (long 1) {
scheduleTime = 1;

}
The Voip class stores two variables, its unique instance and its state.

private static Voip _instance = null;
private VoipState _state;

The sequence diagram shows how the state machine is implemented with method
invocations. Some classes that take part in this process are omitted in order to focus on the
Voip calls.

95

X

. SIP Stack| — Common : Voip : VoipFree : Voiplnvited : Voip : VoipOpen : Service
- Functions Accepted Support
i: processRequ}ast() ‘ ‘ ‘ ‘
|2 inv iteRequestI‘Receiv ed() ‘ ‘ ‘ ‘
3: 'nviteRequest‘Receiv ed() ‘ ‘ ‘
Free->Invited j ‘ ‘
‘ 4: voipSessionlnitiated() ‘
T
‘ 5: Ringing

~

: acceptlnvitation(

8: acceptlInvitation()

: processRequest()

11: ackRequestReceived()

;

|
|
|
|
|
|
T
|
|
6: v oi‘pAcceptSessionQ
|
|
|

Invited->Accepted

|
|
12: ackRequesthceiv ed()
|
|
|
|
|

Fig. 6.3 Voip sequence diagram for an inooming call

|
|
|
|
|
|
|
|
|
|
|
|
\
u Accepted->qpen
|
|
|
|

96

62 Media
The Voip class implements the logic of a call setup, but the management of media is
dore by the MediaControl class. The MediaControl class is implemented following the
singleton pattermn. This class controls two classes, Transmit and Receive. The Transmit and
Receive classes follow the singleton pattern and are implemented using the SVIF APIs.

The MediaControl dlass is first instantiated when opening the Voip GUI. The
resources that are necessary for transmission are reserved in the MediaControl constructor.
This is done instantiating the Transmit instance and calling the create() method on it. The
reason for reserving resources in advance, before starting a call, is that this process is time
consuming, The association of this process to the Voip GUI dows the GUI, but lets the
flow of media start faster once the call is setup.

The quality of received and transmitted media is acoeptable. A silence codec has
been integrated in the audio solution and experimented in transmission. This codec, while
processes voice, suppresses silence and any sound under a threshold volume in transmission.
This limits the mumber of sent packets and of generated traffic. Moreover, a smaller delay is
experienced in the reception of voice. The quelity of an audio call, performed on a PC, is
comparable to that of a commercial product such as NetMeeting. The quality of the audio
call on the PDA is not as good, because of processing limits, but it is still acoeptable.

Voiphvitin
. 2 VoipTrying
[
| /
<<starts>> <<starts>>
, P / VoipAccepted
f J/ ~
<<starts>>
.] <<instantiates>>) V L L
VoipGUI | > MediaControl
ﬂ <<stops>>_ _ | VoipOpen
//
, \
/ \
/ \
/ \
/ \
Transmit Receive

Fig. 6.4 MediaControl dlass diagram

97

The signaling states where media flow is commanded to start and stop are those directly
connected to the VoipOpen state.

98

7. Functional Evaluation

The CommonPlugin module has been tested and integrated with the rest of the
client modules. The steps that have been taken, once the implementation was finished, have
been those of testing the CommonPlugin as a stand-alone application and then testing it
when the services were integrated. The objectives were of testing basic functionalities and of
discovering whice are the limits of the CommonPlugin module. I also provided support to
all other tests, which mainly regarded client-server interactions and service logic.

Four kinds of tests have been done, on the CommonPlugin:

e Testsof Instant Messaging;
e Testof aChat session;

e Testof aVoIP call;

e Test of Presence;

¢ Integration tests.

7.1 Instant Messaging Evaluation

The test regarding Instant Messaging was performed integrating a simple dunmmny
service. This dummmy service, which implements the ServiceCommnector interface, invoked the
PluginCormector's method sendMessage(). The message was sertt to a peer dummny service
that would signal when the message was received and what type of response was retumed. A
check on the message flow was done from the network as well, tracing messages from the
IMS OAM Network Monitor. The sending and receipt of an IM with any kind of
attachment have been tested successfully. The second test, done on the IM service, was
sending muitiple IM, one after the other. The sending was performed successfully. The
reception of muitiple IM in rapid sequence has been critical. The receipt of one IM after
another makes the CommonPlugin module lose the first IM. More tests were dore on this
aspect; these led to the conclusion that the problem arises when two IM arrive with less than
ore second gap between them. This restriction has been considered acceptable for the
project.

7.2 Chat Evaluation
The test regarding the setup of a Chat session was dore in a similar way. The tests
irvolved basic tasks of the setup, exchange of messages and closure in a chat. This test was
performed successfully; all transitions in the state machine were tested.

7.3 VoIP Evaluation
The test of the Voip call was also performed similarly. The test was conducted
successfully, with the performing of nmuiltiple calls in sequence.

99

7.4 Presence Evaluation

The test on Presence was done with the implementation of two dummy services.
Tests on the send of SP SUBSCRIBEs were performed successfully. The test that involved
the two dummy services was that of publishing the presence information of both, in
sequence. This test had to demonstrate that the CommonFunctions implementation stored
the presence information, regarding a service, correctly. The test was performed having
service A registering, then service B registering, service A deregistering and service B
deregistering. In the above case the regjster of service B did not deregister service A and the
deregistering of service A did not deregister service B. This test was performed, with the
addition of further tests on the same functionality. The Presence service works correctly.

7.5 Integration Tests

The integration of services was performed gradually. The first service that was
successtully integrated is the ECity service that embodies the BuddyFinder and CarSharing
services. The Fantacalcio service has been integrated in the second step and the Rolegames
in the last. The problems that have arisen in the integration are of two types: integration
problens (regarding interactions among single module§ and problems regarding the
deployment on the PDA of the application. Both of these problems have been solved.
The Exploit client has been suocessfully tested and demonstrated in a trial dermo.

100

8. Conclusions and Future
Developements

The Exploit client, developed within the Exploit project, has been integrated in the
Semens Mobile’s Mobilab IMS Experimental Systern and will soon be integrated in the IMS
Experimental System of a MNO. The Exploit client shows the advantages the corvergence
to an all-IP UMT'S network will bring. MN Os will benefit from these advantages, being able
to deploy new services rapidly as well as users who will benefit of a wider offer of services.
The evolution in IP terms needs updates in the network and in user terminals. Traditional
cell phones are being replaced by smartphones; mobile phones with advanced processing
capabilities and able to support multimedia applications.

The Exploit client is the example of what a UMT'S client could look like in the near
future. This client is not only able to perform IM, Chat, Presence and Voip, with multimedia
content, but offers an open and flexible interface that permits the developer to build new
services onit.

Further testing and development must be made in order to introduce this client on
the market, supposing an IMS platform was available in a MN O’s core network.

The testing should focus on the reliability of the available services and interfaces,
stressing those that may be their weakness. In the testing chapter we met one of the
weakness, the handling of close consecutive messages in reception. Further tests must be
done, in order to make the client fault tolerant and be sure that all exceptions are handled
correctly.

The development should focus on the portability to those platforms that will
probably dominate the future terminal market. The portability on the Symbian platform
should certainly be considered. In this port issues may come from the availability of the VM
on terminals, lack of memory and GUI handling.

Not al terminals are VM enabled. Moreover, it is not still clear which type of WM
will dominate the smartphone market. The 2ME offers two configurations, the CDC
(Cormected Device Configuation) and the CLDC (Comnected Limited Device
Configuration), and multiple Profiles. The Exploit client is compliant with Personalbva. Its
port should be possible, without mgjor changes, on the CDC configuration and Personal
Profile.

Aviilable smartphones dtill lack in memory and are not able to compete with a
PDAs. This problem should be soon solved with the infroduction of new models.

Personalva supports java AWT APIs. The available Symbian terminals offer the
LME runtime enwironment, with the MIDP Profile. This would result in changing the GUI
from a Window-like GUI to a GUI dloser to that of cell phone. Issues may come in the port
of the Semens SP API's on a 2ME powered device. Further tests and verifications must be
dore.

101

More work must be dore on the audio quelity, it can be improved with an ad-hoc
solution. The introduction of video commumnication is a must on a UMTS terminal.

102

