Appendix A

SIP SSGNALIN G PROTOCOL

The signaling protocol (SP), the reference architecture and protoool characteristic
procedures will be analyzed and described in this chapter. In the second part, the evolution
of SP will be studied, in particlar the extensions that support new services for third
generation networks.

Protocol Introduction

SP, Session Initiation Protoool, is an applicationlayer control protocol that can
establish, modify and terminate nuitimedia sessions (conference, Intemet video telephony,
etd) o just phore calls
The SP protocol has the following characteristics:

e (lient / Server

¢ Technologies tied to the Internet world, particularly to HTTP; it was not conceived with
the goal of guaranteeing inter work with PSI'N networks even if this is possible.

e Decentralized call control of intelligent central terminals.

The first SP standard has been defined in RFC (Request for Comments 2343, ard it is
urnder continuous revisior, P is used together with other protoools, such as:

e RSVP (Resource Reservation Protocol), for keeping network resources;

e RPT (Red-time Trander Protocol) and RT'CP (Real-time Transfer Control Protocol), for
transporting real-time data and for providing service quality feedback;

¢ RTSP (Real-time Streaming Protoool), for controlling delivery of streaming media;

e SAP (Session Announcement Protocol), for spreading muilticast comnumications;

e P (Session Description Protocol), for describing multimedia sessions.

The exchanged messages contains most of the information content, thus reducing
the protocol implementation complexity, and it guarantees significant network scalability.
The Client/Server intelligent components of a SP network remain free of particular tasks,
and offer the following opportunities:

Unicast and multicast support services;
Information exchange about terminal capacity (through SDP);
Call forwarding;

103

e Concemmed terminals kind selection and dealing;
e Mobility support;

e (Call trandfer;

¢ Third party registration

¢ Third party set up;

¢ Programmable services by the client.

The multimedia commumication installation, as defined by the SP protocol, requires
S5steps:

¢ (liagt lactiatr which end-system has to participate in the commumication
¢ (liat guadty parameters and means to adopt to commumnicate;

¢ (liat aulddlity caled availability to commumicate;

e (Cdl sty ringing, and parameters allocation from called and calling;

e Senadrinidrdiar it includes call transfer and ending.

Sip permiits also the infroduction of extensions to signaling messages and changes to
the protoool, acting as header, parameters and methods. It permits a contimuous update,
depending on the importance of supporting new functionalities.

Reference SIP Architecture

Two abstractions identify entities that characterize a session: User Agent Client
(UAC) ard User Agent Server (UAS.

The UAC is a dlient application, which generates signaling messages and sends
requests the UAS is an application server to which the requests arrive and generates or
conveys responses to another server.

An applicative program can act as a client or as a server according to necessity; for
example, an application that controls a multimedia conference can act as UAC to begin calls
ard to invite other users to participate, and as UAS to acoept invitations.

The procedures defined by the SP protocol to manage multimedia sessions can
involve the following members:

e TERMINALS

e LOCATION SERVER;
¢ REGISIRAR SERVER;
¢ PROXY SERVER;

e REDIRECT SERVER

104

Terminals

They are intelligent endpoints, which support rea-time and bi-directional
commuunications between same level entities.

The terminals in ISP architecture can send, receive and elaborate information about
the session in which they want to participate.

Location Server

This type of server supplies information to the Proxy and Redirect Server about the
called user location.

Such information can be obtained through consultation of databases that contain
previous registrations, or using rmobility protocols.

Register Server
It accepts REGISTER requests, is located inside a Proxy or a Redirect Server and it
offers location services.

Proxy Server

A Proxy Server is an intermediate element between the calling terminal and the called
terminal acting at the same time as client and as server (UAC and UAS.

The incoming requests are worked out locally (sending a message to the receiver
terminal) or to an other server able to do it; this happens through message trandation and
formatting .

There are two types of Proxy Server: stateful and stateless.

A stateful server has in memory the incoming and exiting requests to allow a session
state control.

A stateless proxy cancels all information in and out when a request is generated.

Redirect Server

The proceedings used by a Redirect Server to guarantee the exchange of messages
between two endpoints are different from the ones in a Proxy.

When it contacts a client, the server gathers a list of altermative locations from the
Location Services and retums a final response of 3xx class.

105

Messages

The SP protoool uses the same text messages both for signaling management and
for negotiation between two endpoints, exchanging codified parameters as foreseen by SDP.
As Sp is similar to the HTTP protoool, it has the same semantics and syntax, and the
possibility of transporting with such messages information that permit terminals to
commnumicate to set up a session.
Sip gets from HTTP header fields, that is information about sender, addressee, type
of code and capacity:.
A SP message-body has:
- Sart line, which can be arequest or a response line;
= Orne or more header fields;
— Empty line, end of field header;
- hkﬁfagebody
The SP messages can be requests (from client to server) and responses (from server
to cliert).

Request-URI

The Request-URI is a SP URL (Uniform Resource Locator) or a URI (Uniform
Resource Identifier), it indicates the user or the service requested.

A 9P address can st up as user@host, where user can be the user name or a
telephone number, and host is the donain or network address.

Examples;
sip:j.my@provider.com;
sip:gustavo@100.7.5.3;

o
[]
® sip:d.my:secrt@provider.com;transport:tcp;
[]

sip:+39-02-1234-5678:333@gateway.com:user=phone.

Proxy and Redirect Server can use information kept in the field to adapt the request
and eventually to write the Request-URI.

Requests

SP requests are distinguished by having a Request-line that contains a METHOD
nae, a Request-URI, and a SP protocol.
The following methods are supported by client and server:

e INVITE;

e ACK;

e OPTIONS
e BYE;

e CANCEL;

e REGISIER;

106

INFO.

INVITE: This method indicates the desired conmmmications means (audio, video,
games), paraneters of those means and addresses for receiving media from the
answerer. The answer indicates which commumications means are accepted, the
parameters that apply to those means, and addresses for receiving media from the
offerer. The offer/answer model defines restrictions on when offers and answers can be
nmede.

ACK: An ACK request is sert to a client only as an assent to a previous INVITE. This
method is used by a UAC when the answer is positive, and by a proxy for other types of
responses (3xx, 4xx, 5xx, 6x¢). The decidon of a proxy as to how to redirect such
request depends on the fields From, To, CSeq and Call ID; if such header values in the
request are constructed in the same way, ACK is redirect to a proxy, otherwise it must be
accepted. The ACK body can contain a session description, and if the field is empty the
call must consider valid the informmation gotten previoudy with INVITE.

OPTIONS: This method allows the calling client entity to ask information about the
behavior of a particdar called wser; the entity server retums capacity and methods
supported with a particular header field (allow). This method permits the obtaining of
information on the called state, and the INVITE acceptance. Proxy and redirect server
nust forward the request keeping out of the loop of further messaging.

BYE: This method informs the server that the session must terminate; it is forwarded
like an INVITE, and can be forwarded by the called and the caller.

CANCEL: This method is used to cancel a previous request sert by a client. The
following procedures are used to construct a CANCEL request: Call-id, To, CSeq, From,
and must be identical to those in the request being cancelled. When the CANCEL is
generated, the UAS will not generate any response. A proxy must cancel arny pending
transaction, while a redirect answers with a 200 (OK) response if the operation is
pending, or with a 481 (Transaction Does Not Exist) otherwise.

REGISTER: A dient uses this method to register on a Registration Server a user
identified by the address in the field To; such address can be the address of the same
client or a third-party registration address. The registration can be done serding a
REGISTER to a nuiticast servers address “sipmcastnet” (244.0.1.79), so that the
request remains in this particular area. The User Agents can listen to find out the other
users position, obvioudy without forwarding any answer to the requests that are sent.
The requests received by the Register Server are elaborated second priority, and a client
who warnts to register many times must wait for the previous requests to be answered.
The expiration of a request is defined by the field Expires inside the response sert to the
client, a registration should be cancelled by the client witha “0” value.

INFO: The SP protocol defines used messages during a setup procedure or a call stop,
but it does not define the transport mechanism of a particular session. This gap filled in

107

with the INFO method, which is not used to change the status of a call, or a parameter,
or to allow the exchange of optional information along a signaling route. The INFO
method can transport:

Signaling messages PSI'N between gateway PSI'N during a session;
DTMF figures generated by a call;

Information about wireless signals power;

Contracts data;

Non-streaming images and information.

The signaling route for the INFO method is established during setup; it can be direct
between calling and called, or through a proxy server. The INFO server can nuke an
answer:

41111

— Positive: If the request is received with success for an existing call (200 OK).
- Negative:
% If the request is referred to an unknown cal (481 Call
Leg/Transaction Does Not Exisf);
& If the server cammot understand the request body (415 Unsupported
Media Type Message).

If the server receives a CANCEL for an INFO previoudly requested, it behaves as if
the request had never been received (487 Request Cancelled).

Response

This a SP message sent from a server to a client, it indicates the status of a request
sent from a client to a server. Any response allows six values:

¢ INFORMATIONAL IXX;
* SUCCESS2XX;

¢ REDIRECTION 3XX;

* REQUESI FAILURE 4XX;
* SERVERFAILURE 5XX;

* GLOBAL FAILURE 6XX.

¢ INFORMATIONAL Ixx The server contacts the called cliertt, the necessary time is
superior to 200 ms, the response is not definitive, the client waits for more information.
Examples:
— 100 Trying, server looking for user;
— 180 Ringing, user located, waiting for an answer;
= 182 Quewed, called busy with another call, request queued.

108

SUCCESS 2xx: The action was successfully received, understood and accepted, and a
200 OK message was sertt by the server.

REDIRECTION 3xx: Further action needs to be taken in order to complete the
request. Examples:

— 300 Mutiple Choices, the address in the request found several choices, the user
can select a preferred commmumication endpoint, the choices are listed as
Contact fields;

— 301 Moved Permanently, the user can no longer be found at the address in the
request; the requester must retry at a new address given by the Contact header
field;

— 302 Moved Temporarily, the requesting client should retry the request at anew
address given by the Contact header field;

— 380 Altermative Service, the call was not successful, but alternative services are
possible. The altermative services are described in the response message.

REQUEST FAILURE 4xx: Request failure due to the client, a new request must be
sent with modification. Causes of failure can be the following:

— 400 Bad Requet, the request could not be understood due to wrong syntax;
401 Unauthorized, the request requires user authentication;
404 Not Fourd, the user does not exist at the domain specified in the Request;
485 Anbiguous, the request was ambiguous, the response contains a listing of
possible unambiguous addresses in the Contact header field.

1 11

SERVER FAILURE 5xx: The server itself has erred. Examples:
— 500 Sarver Intermal Error, the server encounttered an unexpected condition that
prevented it from fulfilling the request;
— 501 Not Implemented, the server does not support the function required to
fuifill the request.

GLOBAL FAILURES 6xx: The server has definitive information about a particular
user, not just the particular instance indicated in the request. Exanple:
— 604 Does Not Exist Anywhere, the server has authoritative information that
the user indicated in the request does not exist anywhere;
— 606 Not Acceptable, the user's agent was contacted successfully but some
aspects of the session description such as the requested media, bandwidth, or
addressing style were not acceptable.

109

Session Description Protocol

The SDP, Session Description Protocol, is the protocol adopted to describe
multimedia sessions during the various procedures of a starting session. The characteristic
parameters of a multimedia session are contained in a SP body message. For this reason the
S P header Contert Type takes the application/sdp values.

The transported information can be:

¢ Flow type (audio, video....);

e Transport Protoool (RTP/UDP/IP, H.320, ...);

¢ Transmitted data format (H.261 video, MPEG video, ...);
e Session name and goal;

¢ Time duration;

e Available band use;

e Multicast Address and Transport Port;

¢ Remote Address and Transport Port.

Procedures Examples

Presentation of and comment on some characteristic SP procedures.
Registration
Registration example:

Co S: REGISTER sip: gustavo.com SIP/2.0
Via: SIP/2.0/UDP guffy.gustavo.com
From: sip: mark@gustavo.com
To: sip: mark@gustavo.com
Call-ID: 70710@guffy.gustavo.com
CSeqg: 1 REGISTER
Contact: <sip: mark@guffy.gustavo.com: 3890; transport=udp>
Expires: 7200

SO C: 200 OK

The user mark@ gustavo.com over host guffy.gustavo.com is registered via muilticast
on the server gustavo.com, and it waits for an answer at port 3890. The registration lasts two
hours (7200 seconds), and until that moment, all INVITE for mark@ gustavo.com arriving
to sip.gustavo.com will be sent to mark@ guffy.gustavo.com.

The party requesting registration appears in From field, the party who is registered
appears in To; in case of a third-party registration, the From and To addresses are different.

110

Call Setup

Two people dialog INVITE procedure:

Andrew Mark
INVITE (1)
P
TRYING (2
n
RINGING (3
N
QUEUED (4
<
OK(9
<
ACK (6
>
Fig. A.1 Inwite procedure example
Co S INVITE sip: mark@guffy.gustavo.com SIP/2.0

Via: SIP/2.0/UDP my.gustavo.com
From: sip: Andrew@gustavo.com

To: sip: mark@gustavo.com

Call-ID: 666777888@my.gustavo.com
CSeqg: 1 INVITE

Contact: <sip:Andrew@my.gustavo.com>
Subject: mark, hallo!

Content-Type: application/sdp
Content-Length: 187

0

Andrew 53655765 2353687637 IN IP4 128.3.4.5
mark, hallo!

3149328600 0

IN IP4 my.gustavo.com

audio 3456 RTP/AVP 0 3 4 5

rtpmap: 0 PCMU/8000

rtpmap: 3 GSM/8000

O Y 3 Qcdn o<

Andrew (Andrew@ gustavo.com) calls Mark (mark@ gustavo.com), specifying that he
can receive audio flows RTP with code PCMU (0), GSM (3), G.723 (4), and DV14 (5).

The Via field defines the request route, the Call-ID, the Content-Type (SDP
information), and the Content-Length.

The empty line separates the request line and the body.

111

2SO C: s1P/2.0 100 Trying
Via: SIP/2.0/UDP my.gustavo.com
From: sip: Andrew@gustavo.com
To: sip: mark@gustavo.com ;tag=37462311
Call-ID: 666777888@my.gustavo.com
CSeqg: 1 INVITE
Content-Length: 0

(3 SO C:SIP/2.0 180 RINGING
Via: SIP/2.0/UDP my.gustavo.com
From sip: Andrewl@gustavo.com
To: sip: mark@gustavo.com ;tag=37462311
Call-ID: 666777888@my.gustavo.com
CSeqg: 1 INVITE
Content-0Length: O

(4380 C: SIP/2.0 182 Queued, there is previous user
Via: SIP/2.0/UDP my.gustavo.com
From: sip: Andrew@gustavo.com
To: sip: mark@gustavo.com ;tag=37462311
Call-ID: 333444555@gustavo.com
CSeqg: 1 INVITE
Content-Length: 0

Reception call is 100 Trying, then the message 180 Ringing (the phorne is ringing),
then 182 Queued, ID changes from 666777888 to 333444555.

(5S¢ C s1p/2.0 200 OK
Via: SIP/2.0/UDP my.gustavo.com
From: sip: Andrew(@gustavo.com
To: sip:mark@gustavo.com ;tag=37462311
Call-ID: 333444555@my.gustavo.com
CSeqg: 1 INVITE
Contact: sip: mark@guffy.gustavo.com
Content-Type: application/sdp
Content-Length: 156

=0

= mark 4858949 4858949 IN IP4 192. 1.2.3
= yes, here I am!

3149329600 O

= IN IP4 guffy.gustavo.com

= audio 5004 RTP/AVP 0 3

= rtpmap: 0 PCMU/8000

= rtpmap: 3 GSM/8000

O 3 Qcdn o<
Il

(@ Co S ACK sip: mark@guffy.gustavo.com SIP/2.0

112

Via: SIP/2.0/UDP my.gustavo.com

From: sip: Andrewlgustavo.com

To: sip: mark@gustavo.com ;tag=37462311
Call-ID: 333444555@my.gustavo.com

CSeqg: 1 ACK

Call was accepted through 200 OK, the session parammeters are retumed to the body

message. The called user can receive only PCMU and GSVL. The INVITE procedure is
terminated with ACK.

Andrew Mark
ACTIVE SESSON
BYE (1)
>
OK (2
¢
Fig. A.2 Example of session ending
CO S BYE sip: mark@Qguffy.bell-tel.com SIP/2.0

Via: SIP/2.0/UDP my.gustavo.com

From: sip: Andrew@gustavo.com

To: sip: mark@gustavo.com ;tag=37462311
Call-ID: 333444555@my.gustavo.com

CSeqg: 2 BYE

SO C 200 OK
Bye terminates the call.
Proxy USE

This is an example of how a Proxy Server works. User 1 sends an INVITE request
to User2. The address is user2@ gustavo.com; Proxy gets information about the location of

user2 through Location Server (serverl.david.comy). Proxy sends the INVITE request to the
address user2@ serverl.gustavo.com.

113

USR 1 PROXY SERVER LOCATION SERVER

USER 2

Fig. A.3INVITE with Proxy

gustavo.com serverl.gustavo.com
INVITE
User2@ gustavo.com
> USER2
g
serverl.gustavo.com
< INVITE
user2@ serverl.gustavo.com
g
100TRYING
i(l) TRYING <
200 0K
2000K <
<
ACK
> ACK
g

114

Redirect Server Behavior

Redirect Server behavior during an INVITE procedure

USRI PROXY SERVER LOCATION SERVER USER2
gustavo.com serverl.gustavo.com
REGISTER
INVITE user2@ serverl.gustavo.com
User2@ gustavo.com <
>
USER2
g
Serverl.gustavo.com
a
302 MOVED TEMP
<
100TRYING
<
200 0K
a
ACK
>

Fig. A4 INVITE with redirect

User 1 serds an INVITE request, Redirect contacts Location Server. User 2 is
already registered at Location Server. Redirect inserts the address of User 2 at 302 Moved
Temporarily and passes it to User 1, who sends the request to the new address.

115

Appendix B

SIP APIs

The APIs used on the PDA in order to manage and process SP were provided by
Semens Mobile. The architecture of this SP Stack resermbles very much that standardized in
JR32, but it is not a true JAIN SP implementation. The main differences from the JAIN
SP APIs are:

= No support of the JAIN interface;

= No support of the SpFactory;

— Limited support of SP headers concerming the SP parser (but full read/write
aocess to any SP header);

= Support to only UDP as transport protocol.

The reasons that at the time of development brought to this choice, as reported from
the developer, are:
= The focus of SR32 is Java 2, and not Personal va or 2ME;
— Necesdity to keep the stack footprint as small as possible, since the limited
environmert it runs on (PDA).

The choice, within the project, to stick to this stack was foroed by above reasons (the
only existing SP Lite release, NISI' SP Lite, is still under testing and development) and by
the decision of building further services on the existing IMS client.

In the following is given a description of JAIN SP, since the differences with the
stack used in the project are limited.

JAIN SIP
The JAIN SP specification was the first SP specification standardized through the
JCP (Java Certification Procesy. The JAIN SP specification is a general purpose transaction
based Java interface to the SP protocol. It is rich both semantically and in definition to the
S P protocol. The motivation behind JAIN SP is to develop a standard interface to the SP
protocol that can be used independently or by higher level programming entities and
ervironments. JAIN SP can be used in nuitiple ways:
® As a specification for the 2SE platform that enables the development of stand alone
user agent, proxy and registrar applications;
® A base SP implementation for a SP Servlet container that enables the development of
user agent, proxy and registrar applications in a Servlet based erwirormert;
®* A base SP implementation for an Enterprise JavaBeans™ (EJB™) container that
enables the development of user agent, proxy or registrar applications in an EB
envirormmernt.

116

JAIN SP provides a standardized interface that can be used by communications developers
as aminimum to support SP in their applications. The JAIN SP reference implementation
provides a fully functional SP implementation that can be used by developers to talk ISP
from the Java enwironment. The target developer community for JAIN SP is developers
that are familiar with the SP protocol and require transactional control over the SP
implementation.

e Architecture Overview: JAIN SP supports RFC 3261 functionality and the following
SP extensions; the INFO method (RFC 2976), Reliability of provisional responses (RFC
3262), Event Notification Framework (RFC 3265), the UPDATE method (RFC 3311),
the Reason Header (RFC 3326) and the Message method (RFC 3428 defined for instant
messaging. JAIN SP standardizes the interface to the generic transactional model
defined by the SP protocol, providing access to dialog functionality from the transaction
interface. The architecture is developed for the (2SE ervironment therefore is event
based utilizing the Listener/Provider event model. The specification is asynchronous in
nature using transactional identifiers to correlate messages. It defines various factory
classes for creating Request and Response messages and SP headers. JAIN SP defines
an interface for each Header supported, which can be added to Request or Response
messages respectively. These messages are passed to the SpProvider with a transaction
to be sert onto the network, while the SpListener listens for incoming Events that
encapsulate messages that may be responses to initiated dialogs or new incoming dialogs.
JAIN SP is extensible by design. It defines a generic extension header interface that can
be used by applications that utilize headers that are not supported directly by JAIN SP.
The design also defines a mechanism to support future dialog creation methods in a
JAIN SP ernvironment via the use of Jwa Properties. JAIN SP can be managed
statically with regards to IP addresses and router function, and dynamically specific to
ports and transports. The default handling of message retransmissions in JAIN SP is
dependent on the application. Stateful proxy applications need not be concermed with
retransmissions as these are handled by JAIN SP. Typically User Agent applications
nmust handle retransmissions of ACK'’s and 2xx Responses, however JAIN SP provides
a corvenience function that ensures all retransmissions are handled by the JAIN SP
implementation, reducing the complexity for applications acting as user agents. This
function may also be useful if JAIN SP is used as a base implementation for a SP
Servlet container or an EJB implementation.

SIP Lite

The SP Lite specification is an abstracted view of the SP protocol that provides a
SP programming environment for developers who are not SP literate. The API
specification isprimarily developed for the 2SE platform, however as the specification is
quite sl it can also be implemented on the 2ME platform. The motivation behind SP
Lite on the 2ME platform is to provide arich object model that may be suitable for midsize
devices with more processing power and memory than mobile handsets, i.e. PDA’s and SP
phones. SP Lite is most common as a 2SE platform based user agent or a programming
interface to a SP Phore.

117

e Architecture Overview: SP Lite supports the functionality defined in RFC 3261. SP
Lite can be implemented both on the 2SE platform and the 2ME platform, therefore it
does not mandate the Listener/Provider evert model like JAIN SP; however, SP Lite
utilizes the Listener/Provider naming corwvention. SP Lite defines a three-tier
architecture, where the concept of a Listener exists for a Dialog, a Cal and a
CallProvider. These three interfaces in essence listen for incoming messages, dialogs and
calls respectively. SP Lite does not define specific Request and Response interfaces;
rather, they are combined using a single Message interface. Messages are identified based
on Request and Response constants defined within the API specification. Messages are
created from and sent via a specific Dialog, where a Response is created based on a
specific Request message. A Request is created specific to a method, content type and
content body. A generic interface is also defined for SPHeaders, containing generic SP
values and parameters. The SP Lite architecture defines the concept of a Call and
Dialog interface within which a Call may contain muitiple Dialogs. There is no model of
transactions within a Dialog; transactions are handled in the underlying implementation
hidden from the application developer. SP Lite defines a single factory class which is
used to create addresses, users, headers and parameters, while a CallProvider nay be
viewed as a factory class for Calls and a Call may be viewed as a factoryclass for Dialogs.
SP Lite is an API specification designed specifically for User Agent applications. It does
not define or support any proxying capabilities and will always behave statefully. All
retransmission semantics will be handled by the implementation, further simplifying the
programming envirorment for the application developer.

JAIN SIP and SIP Lite

JAIN SP and SP Lite are overlapping technologies as they are primarily designed
for the 2SE platformy however they are distinctly different in programming model and
soope. SP Lite is focused solely on User Agent functionality, while JAIN SP also supports
proxy capabilities. SP Lite defines a call centric architecture, while JAIN SP defines a
transaction centric architecture which provides more powerful control over the protocol.
SP Lite has an abstract simple look and feel i.e. SP Lite has no concept of a Request or
Response or specific SP Headers. SP Lite may be easier to understand compared to JAIN
SP for enterprise application developers, however for SP application developers SP Lite
nuay not provide the required control over the protocol. JAIN SP targets SP application
developers that have a reasonable understanding of the SP protocol, ie. message
components, headers and the transaction model. SP Lite on the contrary is focused on
enabling commumication capabilities to non telecom developers, such as enterprise
developers with minimal SP knowledge.

118

APPENDIX C

Multimedia

More than mere signalling and transmission of static contents, one of the targets of
the project was that of achieving real-time streaming commmumnications. A tool able to
capture, process, trangmit and presert nmuiltimedia was necessary. At the moment the
solutions that are proposed by the java environment are two, MMAPI (Mobile Multimedia
API) and JMF (Java Media FrameworK) packages.

The JVIF package is very well known by developers, since its use on Windows
platforms (9x, NT), Solaris and Limx. This package provides the developer with very
powerful tools to process nuitimedia and it supports, since version 2.0, presentation and
transmission of RTP (Real-Time Transmission Protocol) packets. The drawback of this
solution is that, being bom for the world of PCs and workstations, many features available
on the PC are not supported on a PDA. OnaPDA, downloading the cross-platform release
of this package, it is possible to use the player and RTP packets presentation. The great
strength of this solution is that it is modular, it is possible to program and add platform
dependent plugins and so it is very well extensible.

MMAPI libraries were bom for the CDLC/MIDP platform, they are so part of a
smartphone oriented solution. Their advantages are their performance (they are targeted for
limited devices and the many similarities with the JVMIF package, in fact they are often
refered at as JVIF Lite. Their limitations are no possibility to capture voice/video or to
transmit RTP.

The solution deployed in the project is called SMIF (Simple Media Framework) and is
an extension of the JVIF APIs for the PDA. This extension has been developed by Siemens
in its Munich labs. More details are given on the JVIF package and on SVIF's extensions in

the following chapters.

JMF
The Java Media Framework (JMF) is a large and versatile API used to process time-
based media. Currently at version 2.2, it is Sun' s initiative to bring timdased media
processing to Java. Time-based media is data that changes meaningfully with respect to time,
such as audio and video clips, MIDI sequences, and animations. JVIF has been buiilt so:
e To be eadily used by developers;
e To permit the development of conferencing and streaming applications;
e To support captured muitimedia data;
e To let developers extend and improve its functionalities.
Among other uses, JVIF can:
e Play various nuitimedia files in a Java applet or application. The formats supported
include AU, AVI, MIDI, MPEG, QuicKTime, and WAV;

119

¢ Play streaming media from the Intemet, capture audio and video with your microphone
and video camera, then store the data in a supported format;

¢ Process time-based media and change the content-type format;

¢ Trangmit audio and video in real-time on the Intermet;

¢ Broadcadt live radio or television programs.

To be able to write aJVIF application, it is needed tofully understand the JVIF architecture,

its interfaces, and its classes.

Plug-in codecs,
Present Media renderers, etc

N/

JMF

AR

Process Media Transmit Media
over the network

Capturing

Fig. C.1 JMF Functionality

e JMIF architecture: the JVIF is built on the following elements:

— Data Source: a data source encapsulates the media stream much like a music
CD. IndVIF, aDataSource object represents the audio media, video media, or
a combination of the two. A DataSource can be a file or an incoming stream
from the Intermet. The good thing about this class is, once you determine its
location or protoool, the DataSource encapsulates both the media location, and
the protocol and software used to deliver the media Once created, a
DataSource can be fed info a Player to be rendered, with the Player
unconcermed about where the DataSource originated or what was its original
form. Media data can be obtained from various sources, such as local or
network files, or live Intemet broadcasts As such, DataSources can be
classified according to how a data transfer initiates:

& Pull data source: the client initiates the data trandfer and controls
the data flow from the source. HTTP and FILE serve as examples of
established protocols for this type of data;

120

& Push data source: the server initiates the data transfer and controls
the data flow from a push data source. Push data source examples
include broadcast media and video on demand.

— Capture Device: a capture device represents the hardware you use to capture
data, such as a microphone, a ill camera, or a video camera. Captured media
data can be fed into a Player to be rendered, processed to conwert the data into
another format, or stored for future use. Capture devices can be categorized as
either push or pull sources. With a pull source, the user controls when to
capture an image. An exanple is a still camera where a user clicks a button to
take the dhot. In confrast, a microphone acts as a push source because it
continuoudly provides a stream of audio data.

Java Application
JMF API

Platform (Windows,
Solaris etc.)

277 VAN

— Codec
Renderers e

Fig. C.2VF Architecture

— Player: a Player takes as input a stream of audio or video data and renders it
to a speaker or a screen. A Player can have states, which exist naturally because
a Player has to prepare itself and its data source before it can start playing the
media. In normmal operations, a Player steps through each state until it reaches
the final state. JVIF defines six states in a Player:

& Unrealized: in this state, the Player object has been instantiated. A
newly instantiated Player does not yet know anything about its media.

& Realizing: a Player moves from the unrealized state to the realizing
state when you call the Player' srealize() method. In the realizing state,
the Player is in the process of determining its resource requirements.
A realizing Player often downloads assets over the network.

121

& Realized: transitioning from the realizing state, the Player comes into
the redlized state. In this state the Player knows what resources it
needs and has information about the type of media it is to present. It
can also provide visual components and controls, and its cormections
to other objects in the system are in place.

& Prefetching: when the prefetch() method is called, a Player moves
from the realized state into the prefetching state. A prefetching Player
is preparing to presert its media. During this phase, the Player
preloads its media data, obtains exclusive-use resources, and does
whatever else is needed to play the media data.

& Prefetched: the state where the Player has finished prefetching media
data, it' sready to start.

& Started: this state is entered when the start() method I called. The
Player is now ready to present the media data.

— Processor: a Processor is a type of Player. In the JMF API, a Processor
interface extends Player. As such, a Processor supports the same presentation
controls as a Player. Unlike a Player, though, a Processor has control over what
processing is performed on the input media stream. In addition to rendering a
data source, a Processor can also output media data through a DataSource so it
can be presented by another Player or Processor, further processed by another
Processor, or corwverted to some other format. Besides the six aforementioned
Player states, a Processor includes two additional states that occur before the
Processor enters the realizing state but after the unrealized state:

& Configuring: a Processor enters the configuring state from the
urrealized state when the configure() method is called. A Processor
exists in the configuring state when it connects to the DataSource,
demultiplexes the input stream, and accesses information about the
format of the input data.

& Configured: from the configuring state, a Processor moves into the
configured state when it is cormected to the DataSource and the data
format has been determined.

As with a Player, a Processor transitions to the redlized state when the
realize() method is called.

— DataSink: the DataSnk is a base interface for objects that read media content
delivered by a DataSource and render the media to some destination. As an
example DataSnk, a file-writer object that stores the media in a file may be
considered.

— Format: a Format object represents an object' s exact media format. The
format itself carries no encoding-specific parameters or global-timing
informationy; it describes the format' s encoding name and the type of data the
format requires. Format subclasses include AudioFormat and VideoFormat.

122

— Manager: Managers are used to create Players, Processors, DataSources, and
DataSinks. For example, to render a DataSource, its possible to use Manager to
create a Player for it.

SMF

The Smple Media Framework has been developed by Semens Mobile with the
Technical University of St. Petersburg and is a JMF based envirorment. The motivations
that have led to the development of SVIF come from two directions:
® Necessity on the user's side to be able to work with multimedia data on a PDA, careless

of about the underlying platformy

® Necessity on the developer's side to:

— Have access to a common nuitimedia application framework available on any

conmmon OS platformy

— Be able to develop nuitimedia applications in an easy and comfortable way;

— Write an application that nuns on any Java-enabled device.
The above reason have brought to the birth of the SMF, its primary uses are in
Conferencing Applications (PDA to PDA) and Real-Time Streaming Applications (Server to
PDA), optimized for WinCE devices.
The use of the SMIF is the same as the JVIF to the developer, since Java acts as a wrapper of
the platform dependent DLLs.

Application
SMF API Plug-in API
Jeode
Packetizer/ !Renderers|
Depaketizer
Multiplexer/
Demultiplexer | Effect Filters |

|Video renderer| |

F|—|Audio Renderer|-

Fig. C.3 SMF Framework

123

