Tesi etd-07012007-093914 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea specialistica
Autore
Ploner, Pietro
URN
etd-07012007-093914
Titolo
Finiteness properties of preperiodic points and invariant sets for polynomial mappings
Dipartimento
SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di studi
MATEMATICA
Relatori
Relatore Prof. Dvornicich, Roberto
Parole chiave
- canonical heights
- fully invariant sets
- number fields
- polynomial dynamics
- Narkiewicz's properties
- periodic and preperiodic points
Data inizio appello
20/07/2007
Consultabilità
Completa
Riassunto
This thesis discusses about algebraic dynamic, that is, the application of algebraic number theory to dynamical systems, expecially to polynomial ones.
In the first part we deal with periodic and preperiodic orbits. After showing the most classical results about finiteness properties, we discuss the problem of the maximum length of a finite orbit and give a complete classification of periodic and preperiodic orbits in case of a quadratic number field.
In the second part we study fully invariant sets for polynomial mappings and state some particular finiteness properties, called "Narkiewicz's properties", focusing particularly on the relationships among them.
In the first part we deal with periodic and preperiodic orbits. After showing the most classical results about finiteness properties, we discuss the problem of the maximum length of a finite orbit and give a complete classification of periodic and preperiodic orbits in case of a quadratic number field.
In the second part we study fully invariant sets for polynomial mappings and state some particular finiteness properties, called "Narkiewicz's properties", focusing particularly on the relationships among them.
File
Nome file | Dimensione |
---|---|
fronte.dvi | 1.02 Kb |
sunto.pdf | 45.88 Kb |
tesi.dvi | 364.05 Kb |
Contatta l’autore |