Tesi etd-05262022-161700 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
JOBE, MALICK
URN
etd-05262022-161700
Titolo
Clustering Techniques on Mobility Data
Dipartimento
INFORMATICA
Corso di studi
DATA SCIENCE AND BUSINESS INFORMATICS
Relatori
relatore Dott. Trasarti, Roberto
supervisore Dott. Pappalardo, Luca
tutor Dott. Cornacchia, Giuliano
supervisore Dott. Pappalardo, Luca
tutor Dott. Cornacchia, Giuliano
Parole chiave
- Agglomerative
- Clustering
- Data
- Distances
- Hierarchical
- Mobility
- Points
- Similarity
- Trajectory
Data inizio appello
01/07/2022
Consultabilità
Non consultabile
Data di rilascio
01/07/2092
Riassunto
Understanding trajectory data is instrumental in extracting a pattern from moving objects, this can be applied in several areas such as urban planning, intelligent transportation, and so on. In this thesis, we consider the spatial information for our clustering algorithm. Our contribution to the trajectory clustering includes creating distance functions such as discrete Frechete, DTW, EDR, ERP, Hausdorff, and a distance matrix function to perform our matrix computation. In addition, we use the hierarchical agglomerative clustering method to group our precomputed matrix into clusters and validate our clustering by using the silhouette score or silhouette coefficient. The final clusters from the trajectory clustering are visualized in a map representation. In our clustering we consider the different periods of the day (morning, afternoon, etc.) and when the taxis are occupied or not.
File
Nome file | Dimensione |
---|---|
Tesi non consultabile. |