logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-05202011-172824


Tipo di tesi
Tesi di laurea specialistica
Autore
SAINATO, MICHELA
URN
etd-05202011-172824
Titolo
LOADING AND RELEASE OF A MODEL DRUG IN MESOPOROUS SILICON OXIDE NANOSTRUCTURE
Dipartimento
INGEGNERIA
Corso di studi
INGEGNERIA BIOMEDICA
Relatori
relatore Prof. Barillaro, Giuseppe
correlatore Prof. Sailor, Michael J.
Parole chiave
  • SILICON OXIDE
Data inizio appello
21/06/2011
Consultabilità
Parziale
Data di rilascio
21/06/2051
Riassunto
The sustained delivery of therapeutics with minimal systemic side effects would be a benefit in the treatment of many diseases. Numerous nanostructured materials in various shapes and sizes have been investigated to meet this challenge. This dissertation focuses in particular on the development of nanostructured porous silicon based materials for observable and sustained drug delivery.

Porous silicon possesses many fascinating feature making it an attractive candidate as a optical biosensor and drug delivery system, including the controllability of pore size and volume, the ease of chemical modification to load various drugs, a high surface area, biocompatibility and resorbability.

Its high surface to volume ration and readily surface chemistry also provide additional control for enhancing selectivity. Combining its optical and physical properties together with tailored surface moieties, porous silicon material can be treated as a multifunctional material allowing detection and accommodation of different biomolecules.

The objective of this thesis is to explore porous silicon as a multifunctional material with the ability to detect biomolecules at low concentration in real-time.

Interrogation of porous silicon material as a nanostructure involved three major aspects :
1) manipulation of its optical and spectral information for encoding and signal processing
applications,
2) examination of the effect of its physical properties on molecular transport within its porous structure
3) investigation of analyte-pore surface iteraction for enhances selectivity or better separation based on analyte surface moieties.

In order to improve upon drug release kinetics, loading of drugs into porous silicon particles by physical adsorption were carried out, and the mechanism of drug release was studied.

The work was divided in different part. The first one was studied the previous work that have done in the drug delivery community porous silicon. It was studied the mainly properties of porous silicon as a drug delivery system and optical sensors.

The second part was focus on the porous silicon oxide nanostructure as vehicle for a specific drug fof the treatment of age related macular degeneration.

We found that long-term release of therapeutics (days to mon ths) has not been demonstrated. In the treatment of chronic diseases, it would be advantageous to have a drug delivery system that can provide sustained drug release for prolonged time periods, that is the goal of this thesis.

So in the last part of this work we were able to synthesized a nanostructure double layer porous silica shaped as a "bottleneck" structure.
The experimental part was divide in :
o Determine optimized etching conditions to design a double layer pSilica
o Determine optimized loading conditions
o Perform Drug Release
o Quantify the portein released with a specific assay

This protocol was followed working on two different project : we first loaded the nanocarrier with bevacizumanb (avastin), a monoclonal antibody based drugs, by electrostatic adsorption for its potential in the treatment of the retina ; the second project we investigated the functionality of the synthesized nanostructure using Lysozyme as a model of drug, working with its specific enzymatic assay.



We had good results about the loading of the Bevacizumab into the single layer, representing the neck and the bottom layer of the bottleneck shape. That results confirm in a previous part that the monoclonal antibody based drug can be loaded in a single nanostructure, using a specific etching and loading condition

But the large hydrodymanic diameter about 11nm of the drug, makes it difficult to load it into a porous silica double layer by electrostatic adsorption.

For that reason we wanted to investigate and test the functionality of the nanostructure, using a very stable enzyme, with a hydrodymanic diameter about 3.nm. For this part, we chose this enzyme because it is often use as a surrogate for protein based drugs like avastin or lucentis, and also because rather than other functional assay like BCA we can discriminate between active or denaturated protein form after release using his assay (EnzChek Lysozyme Assay E-22013).

The double layer porous silica structure was generated by etching crystalline Si wafers in aqueous hydrofluoric acid (HF) solutions contained in a teflon etch cell in a two-electrode configuration under galvanostatic conditions. The porous layer is formed on the surfaces of the Si, which is used as a positive anode. Usually a cathode is made of platinum and the fabrication cell has to be made of HF-resistant material, like Teflon.

With the appropriate choice of dopant type, dopant concentrations, and preparation conditions, a wide range of pore sizes are accessible in the porous Si electrochemical system.
Table 1 shows the properties of the porous silica film synthesized and used for the experimental setup. chip A



Surface modification was carried out by Si-O bond, to passivate the silicon surface film. It has been used the thermal oxidation at 800°C for 1 hour. This method create a thin oxide layer on top that can be readily used to attach biomolucules. The negatively charged surfaces in a solution that is greater than pH 2 also offers a potential route for studying electrostatic interaction between the pore walls and the analytes.





Using this etching condition, we was able to verify the loading of the enzyme in a double layer structure. The protein adsorption onto the porous SiO2 result in an increase in the measured EOT optical thickness 2nL. We monitorized the shift of the effective optical thickness, readly obtained from the Fourier transform of the refraction of the porous layer changes. The increase in optical thickness can be attribuited to an increase in the effective index of refraction.

The release step was performed in a 1.5 mL of PBS 7.4 PH store at 37° for 12 h, by the degradation of the matrix in physical aqueous solution. The concentration of the amount of protein relased was measured using the micro BCA assay.

Silica matrices have been developed as a vehicle to host and transport biomolecule and drugs and we was able to get some good data for controlled drug release profiles using this nanostructure : this mesoporous silica carrier possesses many desiderable features that are ideal for controlled and sustained drug delivery.

But an important requirement of many drug delivery applications is that the collection, concentration and immobilization processes not denature or otherwise deactivate the
biomolecule of interest.
While it has been demonstrated that porous Si matrices can release antibodies, enzymes or other biomolecules in their active form, some composition of porous Si are known to undergo irreversible chemical reactions with drugs or other molecules.

In the present case, the enzymatic activity of Lysozyme provides a functional assay of the compatibility of the pSi device with sensitive proteins.

We quantify the activity of lysozyme collected in and then released from the nanostructure of porous silica and we compared to the activity of as-received lysozyme and lysozyme expose to the pSi matrix.

Activity was quantified using a fluorescence-based lysozyme assay using Micrococcus
lysozdeikiticus cells labeled with fluorescein.

The activity of lysozyme was compared with a control that had not been ezposed to the pSi film. The concentration of total collected lysozyme was determined using microBCA assay prior to lysozyme activity experimens. Pearson correlation coefficient between the control and the sample released from the device is 98%.

The important aspect of the present work is that it demonstrates the example of a porous
interferometric biosensors for drug delivery application.

The system demonstrated here was able to capture the enzyme and release it in an active form.

We test the functionality of the porous silica device comparing two different bottleneck shape nanostructure different by the pores size of the neck layer. We demonstrated the possibility to have a sustained release using this kind of nanostructure
File