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“La scienza è una scoperta.
Fai tutti i passi motivati, ben misurati, ma
quello che scopri scopri!
Non è la conseguenza dei passi.
I passi ti portano su quel davanzale da cui
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Chapter 1

Introduction

In this thesis we investigate the properties of dynamical systems with a large number
of degrees of freedom as a function of the number of couplings among the equations
of motion. This parameter is called connectance and exists in the literature since
the seventies, having been introduced in a pioneer numerical work by Gardner and
Ashby [23] for a linear system. Since then this subject has been very little developed,
both from the theoretical and the numerical point of view.

In spite of the reduced number of studies deserved to it, the notion of connectance
is considered important for many applications, in particular ecology and economics.
In these domains a common question is how the qualitative properties of interacting
systems change when the number of interactions among degrees of freedom grows,
i.e. when the dynamics becomes in some sense more complex. One can be interested
to the transition from order to chaos, or more simply to the transition from stability
to instability for a given equilibrium solution. For reasons of simplicity most studies
discard the full richness of nonlinear dynamics and are restricted in fact to the
analysis of local properties about equilibria.

Our aim is to review the relationships between dynamical properties and con-
nectance, for what concerns both local (then linearized systems) and global nonlinear
features. We investigate whether the connectance is a useful indicator to parame-
terize some characteristics of the system. For what concerns the nonlinear dynamics
we concentrate on the conservative case, because in this domain there exists a wide
range of well-established results, even if the non-conservative case can be very im-
portant for the applications.

Our results are mainly numerical and are intended to be a point of departure for
further theoretical work. Nevertheless, they represent as well some firmer bases for
those applications in which the notion of connectance is relevant.
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Our thesis is structured as follows.
In Chapter 2 we summarize the theory of linear systems, which is applied to the

study of local properties about equilibria.
Chapter 3 contains a review of the theory of conservative dynamical systems. In

particular, we concentrate on the study of integrable and quasi-integrable dynamics.
The classical KAM and Nekhoroshev theorems, concerning the stability of the ac-
tions in the non-integrable case, are analysed, and the notion of Hamiltonian chaos
is introduced.

In Chapter 4 we introduce the notion of connectance from an historical point of
view. We discuss the original numerical experiment of Gardner and Ashby [23], who
first introduced the notion of connectance. Their study deals with a linear system,
for which the connectance is simply defined as the fraction of non-zero off-diagonal
elements in the corresponding matrix. The problem under investigation concerns
how the probability of stability changes when the connectance is increased, for a large
set of matrices. The non-connected case consists of a diagonal matrix with negative
elements. The stability is evaluated by computing the eigenvalues, according to the
classical result that a continuous systems is stable when the real part of all the
eigenvalues is negative. All numerical experiments reported in the literature show
that when the matrix elements are taken at random, the probability of instability
grows with the connectance. Conversely, ecological considerations suggest that more
“complex” systems (i.e. with large connectance) are more stable, giving rise to a
decennial controversy. We briefly resume the implications of this debate, as well as
its applications to population and market dynamics.

For the nonlinear case, we discuss the pioneer numerical experiment of Froeschlé
[17], in which for a specific n-dimensional coupled symplectic mapping the relation-
ship between connectance and chaos is investigated. Here the connectance is defined
as in the linear case, given a matrix of coefficients which prescribe the couplings.
Froeschlé found that the fraction of chaotic orbits ncreases not only with the number
of degrees of freedom, but with the connectance as well. This study leaved many
open question, but nevertheless it has not been further developed.

In Chapter 5 we reconsider the influence of the connectance on the stability
from a local analysis point of view. A generic n-dimensional system is linearized
about an equilibrium and the resulting matrix is considered. We take as a point of
departure the classical Gardner and Ashby experiment, and we study numerically
the probability of stability as a function of the connectance and of the statistical
distribution of the matrix elements. While generically we confirm the decrease of
stability with the connectance, we find some regimes for the coefficients in which a
recover of stability at large connectance is obtained. This is a very surprising result,
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which can have applications in ecology and economics. We investigate this special
situation by studying experimentally the probability distribution of the eigenvalue
with largest real part when the matrix is completely full. We discover some scaling
laws as a function of the matrix parameters, for which a theoretical explanation
does not exist yet. These results, obtained in particular for negative off-diagonal
elements, can represent a suggestion for extending the theory of random matrices in
a new direction.

In Chapter 6 we switch from the local analysis to the global investigation of many
orbits in conservative nonlinear systems. We first explain the notion of chaoticity
and discuss some tools to detect and measure chaos. We then study the influence
of the connectance on the degree of chaoticity in two different models. The first
one derives strictly from the original Froeschlé mapping [17], while the second is a
variant of the classical Hamiltonian mean field system [1]. In both cases we deal
with a coupled n-dimensional symplectic mapping in which a matrix of coupling
coefficients is introduced. While in the linear context the values of these coefficients
are distributed according to given statistical laws, here for simplicity they take only
the values zero or one.

A linear model is completely defined by its matrix, so that the connectance is
a non-ambiguous concept. In the nonlinear case, the connectance can be defined
in many ways according to the structure of the equations. For this reason, along
with a definition of connectance still given by the fraction of non-zero elements in
the coupling matrix, we consider another indicator given by the fraction of direct
couplings in the equations of motion. This quantity can be nevertheless difficult to
evaluate a priori.

In the first model, the connectance does not measure directly the fraction of
direct couplings, while it does in the second one. In both systems the probability
of chaoticity always decreases with the percentage of direct dynamical couplings,
as far as the number of effective degrees of freedom is not reduced due to special
symmetries. The connectance is instead a less useful parameter, as it can be seen in
the first model, for which the probability of chaoticity decreases with the connectance
until it reaches a minimum, and then starts to increase. This happens because the
minimum corresponds already to full dynamical coupling, and a further increase of
the connectance leads in fact to a reduction of the number of degrees of freedom.
This is due to the special structure of the couplings when the connectance is larger
than a given value.

These results, which should be extended to a wider class of models, are a first
step toward establishing a relation among the structure of couplings in a system and
its generic properties. The connectance is one of the most economical parameters
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that can be introduced in this sense. It still has predictive properties when intended
as the fraction of direct dynamical couplings, and not simply as a trivial property
of a matrix defining the model equations. Our results not only confirm the previous
findings, but reveal that the relationship between connectance and dynamical prop-
erties is far from being completely understood. The problem remains open toward
further studies, both theoretical and numerical.
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Chapter 2

The stability of the equilibrium
points in dynamical systems

A dynamical system is a mathematical model which expresses the variability of a
situation changing with time. The time t can be represented as continuous, t ∈ IR,
or discrete, t ∈ ZZ.

It is well known that the notion of equilibrium plays a very important role in
the study of the behaviour of a dynamical system. In particular, equilibria become
interesting when their stability properties can be investigated.

In this Chapter we perform an analytic and qualitative study of the behaviour
of the orbits about the equilibrium points in continuous systems. The fundamental
question is whether an orbit with a given initial condition close to an equilibrium
remains indefinitely close or if it escapes far away. Loosely speaking, in the first case
we will say that the equilibrium is stable, in the second case that it is unstable. As
a first step, we introduce the linearization of a generic system about an equilibrium
point and discuss the behaviour of the solution of the relative linear equation, both
in the plane case and for the n-dimensional case. The nature of these solutions
will be used next to analyse the stability of the equilibrium points for the original
system.

The notion of equilibrium discussed in this Chapter will be used in Chapters 4
and 5, in which the transition from stability to instability will be investigated as
a function of the degree of the interactions among the n degrees of freedom of the
system.
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2.1. Linearization of a dynamical system about an equilibrium point

2.1 Linearization of a dynamical system about an equi-
librium point

In this section we discuss the linearization of a dynamical system of n degrees of
freedom about an equilibrium and the behaviour of the corresponding solutions. For
simplicity we start with the case of the plane (n = 2) and we generalize then to the
case of n degrees of freedom.

We consider a general system with n degrees of freedom

f : IRn → IRn

x 7→ f(x) = ẋ
(2.1)

If there exists an equilibrium solution x(t) = c, where c satisfies f(c) = 0, we
consider the linear approximation about c. In other words, we write x = c + x̃ and
we consider the Taylor expansion at the first order for f(c + x̃) , i. e.

f(c + x̃) = Ax̃ +O(x̃2) (2.2)

where A is the Jacobian matrix of f evaluated at c,

Aij =
∂fi

∂xj
|x=c. (2.3)

In this way we reduce ourselves to the study of the system ˙̃x = Ax̃, i.e., by changing
the name of the variable x̃, to the system

ẋ = Ax, x ∈ IRn, (2.4)

where A is a linear real operator. The equation (2.4) with A in the form of (2.3) is
called variational equation for the equation (2.1) related to the particular solution
x = c.

A way to solve this equation consists in changing the coordinates to reduce it to
the simplest possible form, called canonical form. The optimal case occurs when a
new basis {u1, . . . ,un} can be introduced in which the linear operator A is diagonal.
Calling M the change-of-basis matrix from the old coordinates to the new ones ξ,
i.e. x = Mξ, the equation (2.4) takes the form

ξ̇ = Λξ, Λ = M−1AM (2.5)

It is easy to demonstrate that the vectors u1, . . . ,un must satisfy the eigenvalue
equation for the matrix A, i.e.

Aui = λiui (2.6)
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2.1. Linearization of a dynamical system about an equilibrium point

where the eigenvalues λi are the diagonal elements of the matrix Λ.
This diagonalization procedure is always possible if there exist n distinct eigen-

values. Otherwise, the canonical form will not be necessarily diagonal, depending
on the dimension of Ker(A− λI) [52].

In order to have non trivial solutions for the equation (2.6), λ must satisfy the
characteristic equation

det(A− λI) = 0 (2.7)

which is an algebraic equation of the form

Pn(λ) = pnλ
n + pn−1λ

n−1 + . . .+ p0 = 0

with real coefficients p0, . . . pn.
The solutions of the linear system (2.4) can be classified according to the solutions

of the characteristic equation. In the following subsection we discuss in detail the
case n = 2.

2.1.1 The nature of the solutions in the plane

For n = 2, the characteristic equation can be written as

λ2 − λTrA+ detA = 0.

We classify the solutions according to the sign of the discriminant 4 = (TrA)2 −
4detA. We have then the three different cases:

• Case 1: 4 > 0: two different real eigenvalues λ1, λ2;

• Case 2: 4 < 0 two complex-conjugate eigenvalues; λ1, λ2

• Case 3: 4 = 0 two coincident real eigenvalues.

Case 1 (two different real eigenvalues λ1, λ2). The eigenvectors too can be
chosen real and the general solution is

x(t) = α1e
λ1tu1 + α2e

λ2tu2 (αi ∈ IR). (2.8)

We analyse now the qualitative behaviour of the orbits. Denoting with ξ and η the
new variables, the solutions passing from ξ0 and η0 are

ξ(t) = ξ0e
λ1t, η(t) = η0e

λ2t. (2.9)

If we represent the orbits in the plane (ξ, η), we obtain the dynamics displayed
in Figure 2.1 and 2.2. When not both the eigenvalues are equal to zero, we can
distinguish the following cases:
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2.1. Linearization of a dynamical system about an equilibrium point

(a) (b)

Figure 2.1: Case of real different eigenvalues with equal sign. In (a) the eigenvalues
are such that λ1, λ2 > 0 (unstable node). In (b) we have λ1, λ2 < 0 (stable node).

1. λ1 and λ2 with the same sign. By the elimination of the time in equation (2.9),
we obtain η

η0
= ( ξ

ξ0
)λ2/λ1 . We observe that all the orbits cross the origin, the

dynamics depending on the positive or negative sign of the eigenvalues:

(a) if λ1, λ2 > 0 the orbits go out from the origin which is called unstable
node (Figure 2.1a);

(b) if λ1, λ2 < 0 the orbits go into the origin which is called stable node
(Figure 2.1b).

2. λ1 and λ2 with different sign. The trajectories are still given by η
η0

= ( ξ
ξ0

)λ2/λ1

and, when supposing λ1 < 0 < λ2, we obtain Figure 2.2. With the exception
of the orbits lying on the axes, all the other ones come from infinity and go to
infinity. The origin in this case is called unstable saddle.

3. One eigenvalue equal to zero. We assume λ1 = 0 and we write the solutions:

ξ(t) = ξ0, η(t) = η0e
λ2t.

The dynamics depends on the sign of λ2: if λ2 < 0 we obtain Figure 2.3a,
while if λ2 > 0 we obtain Figure 2.3b.

16



2.1. Linearization of a dynamical system about an equilibrium point

Figure 2.2: Case of real different eigenvalues with different sign, λ1 < 0 < λ2

(saddle).

(a) (b)

Figure 2.3: Case of real different eigenvalues λ1, λ2 such that λ1 = 0. In (a) λ2 is
negative, while in (b) λ2 is positive.

17



2.1. Linearization of a dynamical system about an equilibrium point

(a) (b)

Figure 2.4: Case of complex-conjugate eigenvalues with Reλ 6= 0. In (a) Reλ is
positive and one has a source (unstable), while in (b) Reλ is negative and one has
an unstable fo.

Case 2 (eigenvalues λ1, λ2 complex-conjugate). We denote λ1 = λ, u1 = u.
We have then λ2 = λ̄ (complex-conjugate of λ1) and u2 = ū. In analogy with the
previous case, the general solution can be written as

x(t) = C eλtu + Deλ̄tū (C ,D ∈ lC) (2.10)

and it is real for D = C̄. If we want to express the real solution x(t) without
using complex vectors and coefficients, we have to decompose u and λ in real and
imaginary parts

u = v1 + iv2, λ = α+ iβ, vj ∈ IR2, α, β ∈ IR (2.11)

and we have to write C in the exponential form, C = ρe−iγ , with ρ, γ arbitrary
constants. The general solution can be written now in the form

x(t) = ξ(t)v1 + η(t)v2 (2.12)

where ξ(t) = 2ρeαtcos(βt + γ), η(t) = −2ρeαtsin(βt + γ). We obtain then the two
different kinds of dynamics shown in Figure 2.4 and 2.5 . We distinguish the two
different cases, depending whether the real part Reλ is zero or not:

18



2.1. Linearization of a dynamical system about an equilibrium point

Figure 2.5: Case of complex-conjugate eigenvalues with Reλ = 0. One has a center.

1. Reλ 6= 0. The behaviour of the orbits is represented in Figure 2.4 and it
depends on the positive or negative sign of Reλ. In the first case the am-
plitude of the curves increases, escaping from the equilibrium which is called
source (Figure 2.4a). When Reλ < 0 the amplitude of the curves decreases,
approaching the origin which is called sink (Figure 2.4b).

2. Reλ = 0. The behaviour of the orbits is represented in Figure 2.5. The orbits
are circles and the origin is called center.

Case 3 It is the degenerate case in which the two eigenvalues are the same.
Now the canonical form is not always diagonal, because a basis of eigenvectors does
not necessarily exist. The nature of the solutions depends on the dimension of
ker(A− λI). Without entering into the details (for a thorough discussion see [31]),
we just resume the possible cases. Defining λ = λ1 = λ2, when λ 6= 0 we have:

1. dim(ker(A− λI)) = 2. The matrix Λ is given by

Λ =

(
λ 0
0 λ

)

19



2.1. Linearization of a dynamical system about an equilibrium point

(a) (b)

Figure 2.6: The behaviour of the orbits in the phase plane for real and identical
eigenvalues and degeneration of the eigenvectors. One has a star node stable (a) or
unstable (b).

and the trajectories are represented in Figure 2.6 for λ < 0 or λ > 0. The
origin is called star node.

2. dim(ker(A− λI)) = 1. The matrix Λ is given by

Λ =

(
λ 1
0 λ

)

and the trajectories are represented in Figure 2.7 for λ < 0 or λ > 0. The
origin is called degenerate node.

Finally, when λ = 0 the matrix Λ in canonical form is simply

Λ =

(
0 1
0 0

)

and the ξ axis degenerates to equilibrium points, the trajectories being all straight
lines parallel to the ξ axis.
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2.2. The stability of the equilibrium points

(a) (b)

Figure 2.7: The behaviour of the orbits in the phase plane for identical eigenvalues.
One has a degenerate node stable (a) or unstable (b).

2.1.2 The n-dimensional case

The generalization of the previous classification to the n-dimensional case is imme-
diate when all the eigenvalues are distinct and different from zero. In this case, the
corresponding eigenvectors form a basis and the space IRn can be decomposed in
the direct sum of unidimensional subspaces, corresponding to the real eigenvalues,
or two-dimensional subspaces, corresponding to the complex-conjugate eigenvalues.
One recovers immediately the notions of node and saddle points for real eigenval-
ues, and of source, sink and center for complex ones. The cases in which at least
one eigenvalue is zero, or the degenerate cases in which the eigenvalues are not all
distinct, are more complicated. For a more detailed discussion one can refer to the
book of Hirsch-Smale [31].

2.2 The stability of the equilibrium points

As said in the introduction of this Chapter, the notion of equilibrium points is
important when their stability properties are considered. In fact there exist many
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2.2. The stability of the equilibrium points

definitions of stability, which account for different situations and goals. We analyse
some of these definitions, and for our purposes we consider stability for positive
times only.

Definition 2.1 An equilibrium point x̄ of the differential equation ẋ = f(x) is said
to be stable if for any neighborhood U of x̄ there exists a neighborhood V of x̄ such
that any solution with initial condition in V remains in U for any t ≥ 0.

Definition 2.2 An equilibrium point is said to be unstable if it is not stable.

Definition 2.3 An equilibrium point x̄ of the differential equation ẋ = f(x) is said
to be asymptotically stable if
i) it is stable ;
ii) there exists a neighborhood V ∗ of x̄ such that any solution with initial condition
in V ∗ tends to x̄ for t→ +∞.

2.2.1 The 2-dimensional case

For the case of the linear equations in the plane, according to the previous definitions,
a sink, a center or a node with negative eigenvalues are stable, while a saddle or a
node with positive eigenvalues are unstable. The non-degenerate case in which one
eigenvalue is zero is stable when the second eigenvalue is negative, unstable when
the second one is positive. The degenerate cases are stable when the eigenvalue is
negative, unstable when it is zero or positive.

For what concerns asymptotic stability, stable nodes, sinks and the stable de-
generate cases are all asymptotically stable.

To resume our analysis for the origin in the linear equation ẋ = Ax, it is evident
that the properties of stability depend only on the sign of the real parts of the
eigenvalues. More precisely one obtains:

• asymptotic stability, if and only if both eigenvalues have negative real part;

• instability, if and only if at least one eigenvalue has positive real part.

One can demonstrate that the properties of stability persist also for the original
nonlinear system, unless Reλ = 0 or in the degenerate cases, in which the properties
of the equilibrium can not be determined a priori.
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2.2. The stability of the equilibrium points

2.2.2 The n-dimensional case

In the n-dimensional case, there exists the fundamental property:

Proposition 2.1 Given the linear equation ẋ = Ax in IRn, the following holds:

• if all the eigenvalues of A have negative real parts, then the origin is asymp-
totically stable;

• if at least one of the eigenvalues has positive real part, then the origin is
unstable.

We address now the problem of the nonlinear case. For n = 2, we just said that
the correspondence between the behaviour of the nonlinear equation ẋ = f(x) and
of its linearization ẋ = Ax is not always guaranteed. Nevertheless, in the case of the
proposition (2.1), the property of stability of the nonlinear problem are the same of
its linearization and the following holds:

Proposition 2.2 Given the nonlinear equation ẋ = f(x) in IRn and its linearization
in the point c, ẋ = Ax, one has:

• if all the eigenvalues of A have negative real parts, then c is asymptotically
stable;

• if at least one of the eigenvalues has positive real part, then c is unstable.
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Chapter 3

The stability in conservative
systems

In this Chapter we shift our attention to a notion of stability different from the one
we examined in Chapter 2. We will deal with conservative systems, which admit a
description in terms of an Hamiltonian function. In this context, we will examine the
notion of integrable systems, such that some degrees of freedom (the action variables)
are constant of motion. The concept of stability introduced in this Chapter has to be
intended then as “stability of the actions”, i.e. of their time-independent character,
against perturbations of the Hamiltonian function which describes the dynamics.
The two basic theorems we are going to discuss will be the KAM theorem and the
Nekhoroshev theorem, which concern respectively the local stability (i.e. valid for
a limited set of initial conditions in the action space) for an infinite time and the
global stability over a limited time, but still useful in practice. When stability is
loss, the notion of Hamiltonian chaos appears. The topology of the phase space is
then of crucial importance to understand the dynamics.

Starting from continuous systems we will introduce also the notion of symplec-
tic mappings, which in this context can usefully replace the notion of continuous
dynamical systems, because they do not alterate the phase space topology.

All the definitions and theorems presented here constitute a preamble for the
Chapter 6, in which the stability of the actions will be studied as a function of the
interaction among the n degrees of freedom of the system.
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3.1. Hamiltonian systems

3.1 Hamiltonian systems

A system of ordinary differential equations of type

dr
dt

= F(r) (3.1)

is said to be in Hamiltonian form if r is a 2n-uple and, denoting by x1, ..., xn and
v1, ..., vn its 2n components, there exists a function H(v1, ..., vn, x1, ..., xn) such that
the equations (3.1) can be rewritten as

{
v̇i = − ∂H

∂xi

ẋi = ∂H
∂vi

(3.2)

for i = 1, ..., n. The function H is called the Hamiltonian, the equations (3.2) Hamil-
tonian equations and the variables x1, ..., xn and v1, ..., vn are respectively called
coordinates and momenta. The system is said to be autonomous if the Hamiltonian
does not depend on the time and this is the case we will consider in the following.
The Hamiltonian flow is the time evolution of coordinates and momenta described
by (3.2) and has the following specific properties:

1. Conservation of volume. As it is well known, for a system of equations of type
(3.1), the volume δV of an infinitesimal set of initial conditions evolves with
time according to the equation

1
δV

dδV

dt
=

m∑

i=1

∂Fi

∂ri
≡ divF (3.3)

where m is the number of components of r and F. For a Hamiltonian system
H(v1, ..., vn, x1, ..., xn), where m = 2n, r = (v1, ..., vn, x1, ..., xn) and

F = (−∂H
∂x1

, ...,− ∂H
∂xn

,
∂H

∂v1
, ...,

∂H

∂vn
) (3.4)

it is simple to check that divF = 0. This means that the volume is preserved
by Hamiltonian flow. This property is very important, because it implies that
a cloud of initial conditions can never shrink nor inflate. In particular, it also
implies that Hamiltonian dynamics can not have attractors, namely manifolds
of dimension smaller than the number of degrees of freedom towards which the
flow may collapse.
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2. Time evolution of a function along a Hamiltonian flow. Given a function
f(v,x, t) defined on the phase space, with v and x evolving according to
Hamilton equation (3.2), one gets by differentiation

df

dt
= gradxf · ẋ + gradvf · v̇ +

∂f

∂t
= {f,H}+

∂f

∂t
(3.5)

where {,} denote the Poisson bracket.

3. Conservation of H. The rate of change of H versus time can be written, by
differentiation of H(v,x, t) and by applying (3.5), as

dH

dt
= {H,H}+

∂H

∂t
=
∂H

∂t
. (3.6)

In other words, the autonomous Hamiltonians do not change of value along
the flow that they generate, namely they are constants of motion.

3.1.1 The concept of integrability and the action-angle variables

The solution of a system of differential equations

dri
dt

= Fi(r), with i = 1, ..., n and r ≡ (r1, ..., rn) (3.7)

can be written in an implicit form as a system of integral equations
∫ r(t)

r(0)

dri
Fi(r)

=
∫ t

0
dt = t. (3.8)

The system (3.7) is therefore said to be integrable, if the integrals at the left hand
side of (3.8) can be explicitely computed and the resulting relationships F ′i (r(t))−
F ′i (r(0)) = t (where F ′i is the primitive of 1/Fi) can be inverted, giving r(t) as an
explicit function of t.

Using this definition of integrability, it is very difficult to conclude whether a
given system of differential equations is integrable or not. If the solutions of the
integrals are not found, it is hard to know if this is due to a genuine lack of inte-
grability of the system, or simply to a lack of skill in finding the primitive function.
This is precisely the situation which occurred until the end of the XIXth century,
when mathematicians believed that every Hamiltonian system was integrable. For
Hamiltonian systems, a partial help comes from the Liouville theorem, which states
that a n-degrees of freedom Hamiltonian is integrable if it admits n independent
constants of motion Φ1, ...,Φn, such that the Poisson bracket {Φi,Φj} is zero for
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i 6= j. Although it is easier to find constants of motion than to actually solve the
Hamiltonian equations, there is no general recipe on how all constants of motion can
be found. In particular, if only m constants of motion are known, with m < n, it is
hard to know whether additional constants of motion are still to be found or really
do not exist. For instance, for several years celestial mechanics has been looked for
a third constant of motion of the three degrees of freedom Hamiltonian describing
the dynamics of a star in a cubic galactic potential, until Hénon and Heiles [30]
numerically showed that such a third constant of motion does not exist. Conversely,
the Toda lattice Hamiltonian has been long conjectured to be non-integrable, until
Michel Hénon [29] found the last missing constant of motion.

Luckily nowadays the situation is not so desperate as it was before the work of
Poincaré [50] (Section 3.1.3). There exists a criterion of non-integrability – that is
the appearance of chaos, which will be discussed in Section 3.2.1 – that can be used
both analytically and numerically.

For what concerns the integrable Hamiltonian systems, of crucial importance is
the Arnold-Liouville theorem, an extension of Liouville theorem provided by Arnold
in 1963 [3]. In the context of Liouville theorem and if the n-dimensional surface
implicitly defined by the constants of motion Φ1, ...,Φn is compact, Arnold proved
that it is possible to introduce new variables which transform the Hamiltonian in
a simpler form, without changing the Hamiltonian equations. The variables which
satisfy the last request are called canonical and the transformation canonical trans-
formation. The new canonical (p,q) are such that

• the coordinates q1, ..., qn are angles, cyclically defined on an interval [0, 2π]
and the canonical transformation from the original momenta and coordinates
is 2π − periodic on the angles q1, ..., qn;

• in the new variables, the Hamiltonian depends on the momenta p only, i. e.
H ≡ H(p).

The momenta p are usually called the actions of the system. A set of canonical
variables (p,q), where the coordinates q are angles, are generally called action-angle
variables.

3.1.2 Integrable dynamics and quasi-periodic motions

We said that an integrable system can be generally represented, using the action-
angle variables, by a HamiltonianH0 depending on the actions p only. The equations
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of motion are simply:
{
ṗi = −∂H0/∂qi(p) = 0
q̇i = ∂H0/∂pi(p) = ωi(p)

(3.9)

1 ≤ i ≤ n, from which follows that the actions pi are constants of motion, while the
angles qi have constant time derivative ωi. Since the coordinates qi are angles, the
time derivatives ωi are in fact their frequencies.

Therefore each trajectory evolves on what is called in topology a n-dimensional
torus (denoted by lTn) and this motion is called translation on the torus. The mo-
tion given by an integrable Hamiltonian is then a circulation of the angles with
constant frequencies on a torus defined by constant values of the action p. The tori
p=constant are therefore invariant for the dynamics, in the sense that a trajectory
starting on a torus will never leave it and so the phase space is said to be foliated in
invariant tori. Moreover, the motion of the angles on a torus depends qualitatively
on the frequencies ωi(p).

In Figure 3.1 it is shown the simple case n = 1. One can see how the trajectory
on each torus is influenced by the frequency ω. In particular, it lies either on a
discrete set of points (when the frequency is rational, and the orbit is periodic) or
fills densely the torus (when the frequency is irrational).

If we consider the case n = 2, one has the following

Proposition 3.1 An orbit on a torus lT2 of frequencies ω = (ω1, ω2) is periodic if
and only if ω2/ω1 is a rational number; if the previous ratio is irrational then the
orbit is dense on lT2.

We enunciate then hereafter some definitions and properties concerning the
relationship between the frequencies and the resulting motion in the generic n-
dimensional case (n ≥ 2).

Definition 3.1 If the equation k ·ω =
∑n

i=1 kiωi = 0, k = (k1, ..., kn) ∈ ZZn admits
as a unique solution the vector k = (0, ..., 0), then the frequencies are said to be
non-resonant.

Definition 3.2 If there exist n−1 independent linear vectors k such that k ·ω = 0,
then the frequencies are said to be completely resonant.

Definition 3.3 The subset Mω = {k ∈ ZZn : k ·ω = 0} is called the module of the
resonance, the number m = dimMω multiplicity of the resonance and ω resonance
of multiplicity m.
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3.1. Hamiltonian systems

Figure 3.1: The phase space (p,q) of an integrable system for rational and non-
rational frequencies.

Definition 3.4 The quantity |k| ≡ |k1|+...+|kn| is called the order of the resonance.

Proposition 3.2 Let lTn a n-dimensional torus described by the coordinates (q1, ..., qn)
and let q̄(t) = q̄(0)+ ω̄t (mod2π) an orbit on the torus. Let Mω̄ the module of the
resonance associated to ω̄. We obtain then

1. the orbit is periodic if and only if dimMω̄ = n − 1, i. e. ω̄ is completely
resonant.

2. if dimMω̄ = 0, i. e. ω̄ is non-resonant, then the orbit is dense on the torus
and the motion is called quasi-periodic.

3. if 0 < dimMω̄ < 1 then the orbit covers densely the torus of dimension
n− dimMω̄ and the orbit is always called quasi-periodic.

In general, the frequencies depend on the considered torus, namely on the values
of the actions p. In the case where the Hamiltonian is linear in the actions, however,
the frequencies result to be independent of p. In this case the system is said to be
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isochronous. More generally, a Hamiltonian system is called degenerate if

det

(
∂2H0

∂pi∂pj

)
= 0. (3.10)

If the system is degenerate, then there exists at least one direction in the action
space along which the frequencies do not change. Conversely, if the system is non-
degenerate, at least one frequency must change for any arbitrary small displacement
in the action space. In the latter case, the resonant tori are dense in the phase space,
namely arbitrarily close to any point p∗ in the action space there is a point p such
that the equation k · ω = 0 is satisfied by a non-zero integer vector k. We will see
that in the perturbation theory this property has a relevant importance.

3.1.3 Quasi-integrable systems and perturbation theory

A Hamiltonian system is said to be quasi − integrable if, using a suitable set of
action-angle variables, its Hamiltonian function can be written as

H(p,q) = H0(p) + εH1(p,q), (3.11)

where ε is a small parameter and ∂H0/∂p and H1 are intended to be of order unity.
It is therefore natural to regard H0 as the integrable approximation and H1 as its
perturbation. In fact, the flow generated by H0, namely

p = constant andq = ω0t+ q(0)

approximates at order ε the real dynamics generated by H1, in the sense that it
deviates from the real trajectory by a quantity of order ε in a time of order unity,
and by a quantity of order unity in a time of order 1/ε. Unfortunately, if one
is interested in a very accurate description of the dynamics or in its qualitative
behaviour on timescales longer than 1/ε, the knowledge of the flow generated by
H0 is not enough and one has to look for much better approximations of the real
dynamics. This is the goal of perturbation theory. First of all, we inquire if there
exists a canonical transformation (p,q) → (p′,q′) which transforms the Hamiltonian
H(p,q) into an integrable one H ′(p′). In order to understand better this point we
give a simple example for which this transformation exists. We consider a system
with n degrees of freedom, where H0 is a system of uncoupled oscillators, i. e.

H0(p) =
n∑

l=1

ωlpl (3.12)
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and H1 is an analytic function depending only on the angles qi, i. e.

H1(q) =
∑

k∈ZZn

cke
ik·q (3.13)

where the coefficients ck are constant.
We use then the following transformation:

pl = p′l −
∑

k∈ZZn

ckkl

k · ω e
ik·q. (3.14)

We can simply verify that this transformation is canonical, because it preserves
the fundamental Poisson brackets. In the new variables we obtain the following
Hamiltonian which is integrable:

H ′(p′) =
n∑

l=1

ωlp
′
l. (3.15)

It remains to demonstrate that the previous transformation is allowed, studying the
condition of existence of the denominators and of convergence of the series. The first
request implies that all the frequencies ω1, ..., ωn are not resonant (

∑n
i=1 ki ·ωi 6= 0).

The second request adds the fact that the frequencies ω must be sufficiently far from
resonance. In particular it is sufficient to assume that the frequencies satisfy the so
called diophantine condition:

|k · ω| > γ

|k|τ ∀k ∈ ZZn (3.16)

with some real positive γ and τ . With this assumption, we can estimate the series:

|∑k
ckkl
k·ω e

ik·q| ≤ ∑
k
|ck||k|
|k·ω| |eik·q| ≤

≤ 1
γ

∑
k |ck||k|τ+1|eik·q| ≤ 1

γ

∑
k e

−|k|σ|k|τ+1|eik·q| (3.17)

where we have used the fact that, being H1 analytic, |ck| ≤ e−|k|σ for all k ∈ ZZn

and for some positive σ, which is the radius of analyticity of H1 in the complex
plane. Now we can simply demonstrate the convergence on the complex space with
Im(q)< σ − δ, ∀ δ < σ. Indeed on this domain, |eik·q| ≤ e|k|(σ−δ) and therefore
(3.17) is bounded by

1
γ

∑

k

|k|τ+1e−|k|δ (3.18)

which is convergent.
Summing up, we can assert that the two fundamental requests for the existence

of the canonical transformation are the following:
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1. the frequencies ω must be diophantine;

2. this property must hold everywhere in the phase space.

This last property is fulfilled in the case considered above, since the Hamiltonian
we have considered is linear in the actions and, by consequence, the frequencies are
the same over all the action-space. Therefore, if the frequencies are diophantine, the
system is integrable. However this property is not true for general Hamiltonians:
already in the simple model of uncoupled rotators, where H0 =

∑
l clp

2
l /2, the

frequencies are function of p. We give then the rigorous result, known as Poincaré
theorem.

Theorem 3.1 (Poincaré)
Let H(p,q) = H0(p) + εH1(p,q) with (p,q) ∈ D × lTn, D open set of IRn and
assume:
i) H0 is non-degenerate, more precisely

det

(
∂2H0

∂pi∂pj

)
6= 0

in an open subset D0 of D;
ii) the Fourier series of H1 is essentially full. More precisely, denoting

H1(p,q) =
∑

k∈ZZn

ck(p)eik·q (3.19)

for any k ∈ ZZn there exists k′ parallel to k such that ck′ 6= 0 in D0. Then a
function χ solving (3.19) in D0 does not exist.

3.1.4 Kam Theorem

The considerations made in the last section show that it is not possible to eliminate
globally the angles in a non-degenerate quasi-integrable Hamiltonian system because
of the dense presence of the resonances. A possibility is to eliminate the angles only
for those values of p corresponding to frequencies which are diophantine. A simple
Hamiltonian that, although non-integrable in general, admits one exact solution in
this sense is:

H(I,ϕ) = H0(I) +H1(I,ϕ) with ||H1|| = O(||I||2), (3.20)
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where I and ϕ are conjugate action-angle variables. In fact, for I= 0, the equations
of motion are

{
İ = 0
ϕ̇ = ∂H0/∂I(0)

(3.21)

and the solution correspondent to the initial condition (I,ϕ) = (0,ϕ0) is I = 0 and
ϕ = (∂H0/∂I)(0)t+ ϕ0. Therefore, the torus I = 0, ϕ ∈ lTn is invariant for the flow
of (3.20), because every orbit starts on the torus and never leaves it. This simple
example leads to the original approach followed by Kolmogorov in 1954 [33]. He
proved that, given a quasi-integrable Hamiltonian H(p,q) = H0(p)+ εH1(p,q) and
a value of p0 such that

1. ω0 = (∂H0/∂p)(p0) satisfies the diophantine condition (3.16), with some real
positive constant γ and τ ;

2. H0 is non degenerate in p0, i. e.:

det

(
∂2H0

∂pi∂pj

)
6= 0

then there exists ε̄(ω0) such that ∀ ε < ε̄ there exists a canonical transformation
(p,q) → (I,ϕ) which allows to write the Hamiltonian in the form (3.20), with
(∂H ′

0/∂I)(0) = ω0.

The Kolmogorov theorem implies that quasi-integrable systems admit, for small
enough perturbations, invariant tori in correspondence with the diophantine fre-
quencies. The Hamiltonian equations can be integrated if restricted to these tori.
The theorem has been extended and improved by Moser in 1962 [46] and Arnold in
1963 [2], and for this reason it is known as the KAM theorem. For the same reason
the invariant tori are usually called KAM tori.

The main points of the theorem are the following:

1. the dynamics of the integrable part H0 gives a foliation of the phase space
in invariant tori, the actions p being constant and the angles q circulating
linearly with time, with frequencies ω0(p);

2. when a small perturbation εH1(p,q) is added, the KAM theorem ensures
that the tori with diophantine frequencies persist invariant for the flow of the
complete Hamiltonian H0 + εH1;
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3. for the invariant torus, new local action-angle variables I,ϕ can be introduced,
such that the Hamiltonian is transformed in the form (3.20). In these vari-
ables, the motion on the torus is very simple: the action I are constants on
the invariant torus and the angles ϕ circulate linearly with time. In the orig-
inal variable (p,q) the motion on the torus can be computed by composing
all the transformations that have been required to give the Hamiltonian the
form (3.20). Since each of these transformations is periodic in the angles, the
relationship between (p,q) and (I,ϕ) is of type p = P(I,ϕ), q = Q(I,ϕ),
with functions P and Q periodic in ϕ, and Q−1 periodic in q. Therefore on
the torus the angles q are no longer linear functions of time, but still have
constant frequencies. The actions p have oscillations that are periodic in the
angles q, being p = P(I,Q−1(q)), and quasi-periodic with time, the angles
having non-resonant frequencies. For a given frequency vector, the perturbed
invariant torus is translated and distorted in the phase space with respect to
the unperturbed torus, however it is not possible to rectify all tori with the
same analytic transformation. The situation is illustrated in Figure 3.2;

4. the size of ε determines the fraction of tori which remain invariant. In the
theorem ε must be smaller than a fixed threshold, which is of the order of γ4

[33]. Therefore, increasing ε, the number of invariant tori is reduced and only
those with large enough γ can survive. Moreover, if ε is too large, no invariant
tori persist.

Even if the KAM theorem does not provide any information on the perturbed dy-
namics away from the invariant tori, we can expect that most of them are destroyed
and their orbits show a “chaotic” behaviour. In this sense the KAM theorem does
not give a solution and the problem of description of chaotic dynamics requires the
study of resonant dynamics, which is explained next. Nevertheless the existence of
KAM tori plays a very important role in the dynamics of the global system. To
understand better this fact, it is useful to look for a graphic representation of the
KAM theorem, which is the purpose of the next section.

3.1.5 A graphic representation of the KAM theorem in low dimen-
sion: the Poincaré section

If we consider a Hamiltonian system with two degrees of freedom, it is simple to vi-
sualize its dynamics by using the Poincaré section. We consider the restriction of the
HamiltonianH(p1, p2, q1, q2) to the trajectories which satisfyH(p1, p2, q1, q2) = C for
some constant C. The phase space is 4D, but the conservation of the energy forces
the motion to evolve in a three-dimensional space. We reduce now the dimension
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p

q

p

q

ε=0ε=0

Figure 3.2: The phase space of the integrable and of the perturbed Hamiltonian. A
torus with diophantine frequencies persists invariant for the flow, but it is deformed
and translated with respect to the unperturbed one.

of the system by choosing a two-dimensional surface Σ transverse to most of such
trajectories. Since in general the actions of the system have only small oscillations,
while the angles circulate between 0 and 2π, we can choose Σ as the surface defined
by a constant value of one angle, for instance setting q2 = 0. For a given value of C,
the values of p1 and q1 on the surface q2 = 0 unambiguously determines the value
of the remaining action p2, which can be computed by solving the implicit equation
H(p1, q1, p2, 0) = C. Now, by numerical integrations of the motion we can calculate
the successive intersection of each trajectory with the surface Σ and consider only
those generated when the trajectory pierces the surface in a given direction, for in-
stance q̇2 > 0. The sequence of points p1, q1 that each trajectory marks on Σ gives
an unequivocal image of the time evolution of the trajectory in phase space (Figure
3.3). If a trajectory lies on a KAM torus, the sequence of points p1, q1 must lie on a
one dimensional curve. In fact, on a KAM torus the actions are periodic functions
of the angles, so that – denoting by p1 = P (q1, q2) the periodic relationship between
p1 and (q1,q2) – on the surface of section q2 = 0 the points p1, q1 must lie on the
curve p1 = P (q1, 0). Moreover, because the angles have non-resonant frequencies,
at each intersection with the surface q2 = 0 the angle q1 has to assume a different
value on the interval [0, 2π] and, with time passing, the sequence of points on the
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surface of section must densely fill the curve p1 = P (q1, 0). As a consequence, if the
Poincaré section is computed for long enough time, the KAM tori appear as solid
curves crossing the entire interval [0, 2π].

An example of Poincaré section for a system with two degrees of freedom is
displayed on Figure 3.4. One can see an invariant torus, appearing as a solid line. In
general, each KAM torus divides the phase space in two parts that are disconnected
for the dynamics. As a consequence, the trajectories can not pass from one side of
the invariant torus to the other without crossing it: this is impossible by definition
of invariance. In the case of n > 2 this is not true and this is due to the co-
dimension of the KAM tori with respect to the phase space. In fact, in the case of
n degrees of freedom the dimension of the phase space is 2n and the conservation
of the Hamiltonian forces the motion to evolve in a 2(n − 1)-dimensional space. A
KAM torus has dimension n, so the co-dimension is n − 1. This implies that the
phase space is divided in two disconnected parts only if n = 2.

For n = 3, the situation becomes more complicated and the Poincaré section in
the phase space does not allow a useful visualization. Instead, because the dynamics
is determined by the values more or less rational of the frequencies, it is instructive to
analyse the frequency space. Taking for simplicity a two-degrees of freedom system
again, the frequency space is a plane, but on a surface of constant Hamiltonian it
becomes a line, parameterized by the ratio ω1/ω2 (Figure 3.5).

The KAM tori are fixed points over the frequencies line, which correspond to
the diophantine values. Conversely, the chaotic trajectories are characterized by
frequencies which move with time, so they move on the line. Each KAM torus
divides the frequency space into two disconnected parts. The trajectories which do
not lie on invariant tori can wander on the frequency line, but can not pass through
diophantine ratios.

Now, in the case n = 3, the frequency space is two-dimensional and we choose
the ratio ω1/ω3 and ω2/ω3 as coordinates. Again, KAM tori are represented by
dots in this frequency plane, while the trajectories that are not on invariant tori
may wander on the frequency plane. It is immediately evident from Figure 3.6 that
the trajectory can slalom among KAM tori and “diffuse” , in principle, everywhere.
In reality, we will see in Section 3.2.2, that the slalom among KAM tori takes an
extremely long time.

3.2 Area-preserving mappings

The intersection of a trajectory with a Poincaré section is an example of a discrete
dynamical system (called in this case Poincaré map). We saw that many character-
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Figure 3.3: Example of a Poincaré section Σ. The orbit intersects subsequently the
surface, in the same direction, at the points xi.

-3.1 -1.1 0.9 2.9
q

-2.5

2.5

7.5

p

Figure 3.4: Invariant torus bound chaotic layers in Hamiltonian systems with two
degrees of freedom, originating at (q, p) = (−3.1, 3.75)
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KAM tori KAM tori

Chaotic Orbit

ω /ω1 2

n = 2

Figure 3.5: KAM tori and chaotic orbits in the frequency space in the case of two
degrees of freedom.

istics of the topology of the phase space in a Hamiltonian system can be understood
by examining the corresponding Poincaré map. If one has to study only the general
properties of the Hamiltonian dynamics, without focalizing on a specific system, he
can more easily analyse the dynamics of a discrete map which derives from a time-
continuous Hamiltonian. Such maps, called symplectic, have been largely used in
the literature like a real numerical laboratory. Let us just recall the standard map
[9],[15] and the Hénon’s quadratic map [28].

To be more precise, we give the following

Definition 3.5 Let W ∈ IR2n an open set, and ψ : W →W an application of class
C1. The application (map) ψ is said symplectic if its Jacobian matrix J satisfies the
relation

JTEJ = E (3.22)

where E is the 2n× 2n block matrix

E =

(
0 I
−I 0

)
,

I being the n× n unit matrix.
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ω /ω

ω / ω 32

1 3

Chaotic Orbit

KAM tori

n = 3

Figure 3.6: KAM tori and chaotic orbits in the frequency space in the case of three
degrees of freedom.

When n = 1, the symplecticity condition is equivalent to the request that detJ = 1,
i.e. the map is area-preserving.

It turns out that any 2n-symplectic map is Hamiltonian, in the sense that there
exists a Hamiltonian such that the transformation generated by the map is the sec-
tion at discrete times of the flow generated by the Hamiltonian in the 2n-dimensional
phase space.

We give here a general procedure to construct a symplectic map from a continu-
ous Hamiltonian system. In particular, we derive the well-known standard map from
the equations of the pendulum.

Let us consider its Hamiltonian:

H =
p2

2
− cos q. (3.23)

We can associate to the corresponding equation of motion
{
q̇ = ∂H

∂p = p

ṗ = −∂H
∂q = − sin q

(3.24)
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Figure 3.7: The phase portrait of the pendulum for different values of ∆t when using
the Euler integration method. Even for a small ∆t (∆t = 0.02, a),the area is not
conserved. For a larger ∆t (∆t = 0.1, b), the global pattern is completely lost.

the mapping T1:

T1 =

{
q1 = q0 + p0∆t
p1 = p0 −∆t sin q0

(3.25)

which is nothing but the explicit Euler method to compute orbits of ordinary differ-
ential equations. If we consider the phase space diagram obtained with T1, even with
a small value of ∆t (∆t = 0.02), the system appears slowly expanding (Figure 3.7a).
Instead, for a larger value of ∆t (∆t = 0.1), the expansion is drastic (Figure 3.7b). If
we compute the determinant of the Jacobian matrix J we obtain |J | = 1+∆t2 cos q0
which is not equal to one, therefore the mapping is not area-preserving.

Let us make a slight change in the mapping by taking an implicit Euler scheme
in the equation for p, which leads to the mapping T2:

T2 =

{
q1 = q0 + p0∆t
p1 = p0 −∆t sin q1

(3.26)

Again if ∆t→ 0 the discretization is consistent with the initial system of equations.
This method is known as leap-frog. The determinant of the Jacobian matrix is now
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Figure 3.8: The phase portrait of the pendulum for different values of ∆t when using
the leap-frog integration method. For a small ∆t (∆t = 0.002, a), the invariant
curves are well preserved. Even for a larger ∆t (∆t = 0.1, b), the invariant curves
are only distorted but not completely destroyed.

equal to 1, so we obtained an area-preserving (and then symplectic) map for any
∆t. Thanks to the area-preserving property, even for large values of ∆t (∆t ' 0.1)
the phase space diagram of the map is qualitatively in agreement with that of the
pendulum (Figure 3.8).

The procedure to obtain a symplectic map can be better understood if one splits
the Hamiltonian in two parts: H = H1 + H2 with H1 = p2/2 and H2 = − cos q.
The Euler explicit method applied successively to H1 and H2 gives rise to the two
mappings:

T ′2 =

{
q1 = q0 + p0∆t
p1 = p0

(3.27)

and:

T ′′2 =

{
q2 = q1
p2 = p1 − sin q1∆t

(3.28)
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which are both area-preserving, because only one variable is advanced at each time.
The composite mapping T2 = T ′2 ◦ T ′′2 , which is the final standard map, is still
area-preserving.

By the variable change p∆t→ p and taking ε = −∆t2, the symplectic standard
map is commonly written as

T =

{
pi+1 = pi + ε sin(pi + qi) (mod2π)
qi+1 = pi + qi (mod2π)

(3.29)

The standard map (3.29) obtained this way is then symplectic, but the Hamil-
tonian from which it derives is not simply related to the one of the pendulum, from
which we started the procedure. Actually, it cannot be written in an explicit form.
It can be easily shown that if ε = 0 the standard map reduces to the Poincaré section
at q2 = 0 of the integrable Hamiltonian system H0(p1, p2, q1, q2) = p2

1/2 + 2πp2, so
when ε 6= 0 it will represent the Poincaré map of a non-integrable perturbed system
H0 + εH1. ε plays then the role of the perturbation parameter.

3.2.1 The visualization of the KAM theorem using the standard
map

To visualize the KAM theorem, we use then the standard map (3.29). We show the
phase portraits for different values of ε and analyse them in the light of the KAM
theory. In Figure 3.9 we have chosen 20 initial conditions on the axis q = 0, with
initial p regularly spaced on the interval [−π, π].

In the case where ε is small (ε = 0.2, Figure 3.9a) every initial condition generates
an orbit lying on a KAM torus. This implies that the volume filled by tori KAM
is large. The tori are significantly distorted with respect to the case ε = 0 and this
distortion leaves an “empty region” around p = 0. This is a resonant region and
the trajectories there do not cross the axis q = 0, so that they can not be computed
with our choice of initial conditions. The dynamics in the resonant region will be
investigated in the light of the Nekhoroshev Theorem (Section 3.2.2). We finally
note that, while most of the KAM tori appear as solid curves in Figure 3.9a, the
one passing through p = −2.24 on the axis q = 0 appears as a dotted curve. This
is because the time required to fill the torus densely with respect to the graphic
resolution depends on the frequencies on the torus. The closer are the frequencies
to a rational ratio, the longer is this time.

In Figure 3.9b, the value of ε is increased to 0.6. The dynamical structure
changes significantly. Only 14 initial conditions generate trajectories lying on KAM
tori. The initial conditions with p = ±2.84 and p = ±1.36 generate trajectories
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(a) (b)

(c) (d)

Figure 3.9: The phase portrait of the standard map for different values of ε. (a):
ε = 0.2, (b): ε = 0.6, (c): ε = 0.9, (d): ε = 1.2. When increasing ε, the KAM tori
become more distorted and more rare, while chaotic regions become more and more
extended.
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still lying on invariant curves, but these curves have a topological structure which
is different from that of KAM tori: they appear as chains of closed circles called
islands. These invariant curves correspond to the resonant dynamics. Finally, the
iterations of the initial conditions p = ±0.15, q = 0 do not lie on a curve, but they
are scattered over an area of larger dimension. Here KAM tori are destroyed, the
actions being not periodically related to the angles. This is called a chaotic region
and it is related to the resonant dynamics. We will analyse in detail the concept of
chaos in Chapter 6, when introducing the Lyapunov Exponents.

In Figure 3.9c, only 4 initial conditions generate trajectories on KAM tori, show-
ing that the volume filled by KAM tori shrinks when increasing the value of ε
(ε = 0.9). Chaotic zones appear also around some chains of island and not only
around the central empty region as it was the case of Figure (3.9b). As said in Sec-
tion 3.1.5, the surviving KAM tori separate the (p,q)-space in disconnected regions,
so the dynamical evolution of the trajectories in the chaotic regions is bounded. For
instance, the trajectory starting with p = −0.15 will never reach the region with
p < −2.5, because a KAM torus can not be crossed.

Finally, in Figure 3.9d, we choose ε = 1.2 and all KAM tori have disappeared.
The chaotic regions have merged together, and now dominate the phase space por-
trait of the system. It is not possible to distinguish the evolutions of different initial
conditions in the chaotic zone. The action p can assume any value during the evo-
lution of chaotic trajectories.

3.2.2 The Nekhoroshev Theorem

The theorem which we are going to explain, proved by Nekhoroshev in 1976 [47], is
a result on the stability of the actions as the KAM theorem and it is, in a certain
way, complementary to it. It concerns too a quasi-integrable Hamiltonian of the
form (3.11), but H must have a supplementary hypothesis of convexity which will
be explained in the following. The result is valid for all initial conditions, conversely
to the KAM theorem in which the initial conditions must correspond to diophantine
frequencies. In order to obtain this global result, valid for all actions, the Nekhoro-
shev theorem replaces the concept of stability normally used in mathematics (namely
over an infinite time), with the concept of stability over long time, but we will see
that this is not penalizing for most practical applications.

The theorem can be stated in the following form:

Theorem 3.2 (Nekhoroshev)
Let H(p,q) = H0(p) + εH1(p,q) be analytic in a domain D ≡ W × lTn, with
W ⊂ IRn open and bounded. Let be H1 such that ||H1|| ≤ 1.
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Given ∆ ∈ IR, in the following we define by W − ∆ the set of points p which are
contained in W together with a neighborhood of radius ∆.

Consider the matrix C(p) defined by Cij(p) = ∂2H0
∂pi∂pj

(p) and assume the convex-
ity hypothesis:

C(p)v · v 6= 0 ∀p ∈ W and ∀v ∈ IRn\0. (3.30)

Then, there exist positive constants ε∗, α, β, a, b such that for any ε < ε∗ one has:

||p(t)− p(0)|| ≤ ∆ ≡ αεa,

for all p(0) ∈W −∆ and for all |t| ≤ T (ε), where

T = β

(
ε∗
ε

) 1
2

exp

(
ε∗
ε

)b

. (3.31)

The Nekhoroshev theorem does not exclude the possibility of chaotic motions.
Indeed, the action p can possibly change in a chaotic way: the theorem just states
that these changes are bounded by a quantity αεa up to the time T . Slow drift can
force the actions to change more than αεa with respect to the initial conditions only
after a time larger than T , as sketched in Figure 3.10. The important point is that
the stability time T grows exponentially with respect to 1

ε . Therefore, as soon as
ε is small, the stability time becomes extremely long and can possibly exceed the
physical lifetime of the system, thus providing a result of practical stability.

A fundamental approach to the theorem, based on a geometric interpretation of
it, put in evidence a particular structure in the phase space, called geography of the
resonances. The fundamental idea is to expand the Hamiltonian in Fourier series
of the angles, and truncate the series by taking the terms containing resonances
only up to a given order K. We recall that the order of a resonance of the type
k · ω = 0 is defined as |k| =

∑n
i=1 |ki|. On one hand, the number of resonances up

to a given order is finite and each subset of the action space contains only a finite
number of corresponding resonant lines. On the other hand, the analyticity of the
Hamiltonian implies that the neglected terms in the truncated series, corresponding
to resonances of order larger than K, have a size not exceeding exp(−Kσ). It can be
shown that the threshold K can be chosen as large as 1/εb, so that this remainder
(termed here RK) turns out to be exponentially small in 1/εb. This is a key point
to obtain a stability time T (ε) depending exponentially on 1/εb as in (3.31). We
consider for simplicity a system with three degrees of freedom and we analyse the
frequency space, by drawing its structure.

As a first step we define a non-resonant domain, as the set of frequencies which
are far enough from all resonances up to order K. More precisely, this domain is
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Figure 3.10: Evolution of the actions with respect to time in the Nekhoroshev regime.
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Figure 3.11: Geography of the resonances in the frequency space for a system with
three degrees of freedom.
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defined as the set of frequencies ω such that |k·ω| > √
ε for all k with |k| ≤ K. In

Figure 3.11 this is the white disconnected domain, bounded by the blue stripes. All
the terms in the truncated Hamiltonian are not-resonant in such a domain, because
the denominator k·ω has a lower limit larger than zero. We can then integrate
the Hamiltonian, if we cut off the remainder RK , which is exponentially small. By
neglecting the flow represented by RK , we can conclude that the frequencies are
fixed in the non-resonant domain.

The second step consists in the analysis of the domains called single resonance
domains, i.e the blue stripes in Figure 3.11. By definition, in these domains there
exists only one single resonance of order smaller than K. Then one reduces the
Hamiltonian to having only one resonant term and a remainder RK , which is, again,
exponentially small. Neglecting the remainder, such a Hamiltonian is still integrable,
but depends on one resonant angle, so that the actions are no longer fixed. They
change, driven by the resonant harmonic, along what is usually called the fast drift
direction. Now, for a convex Hamiltonian, one can prove that the fast drift direction
is transversal to the resonant lines, so in Figure 3.11 it will be orthogonal to the
blue stripes. Therefore, following indefinitely the fast drift direction, the motion
would enter the non-resonant domain. But this is impossible, because in the non-
resonant domain the frequencies are fixed, as explained above. On the other hand,
transversal motion with respect to the fast drift direction can be forced only by the
non-integrable remainder RK , so that it is exponentially slow. This slow motion is
usually called Arnold diffusion and the set of lines of the type k·ω= 0 are known as
Arnold Web.

One can better understand the transversality of the motion, by analysing a
system with two degrees of freedom. We consider the Hamiltonian

H(p1, p2, q1, q2) =
1
2
(p2

1 + p2
2) + εcos(q1 − q2) (3.32)

and we analyse the integrable part H0 = 1
2(p2

1 + p2
2).

The motion must follow the level curves of the Hamiltonian, which on the plane
(p1, p2) are represented on Figure 3.12a. We calculate the resonant lines of the
Hamiltonian (3.32). The two frequencies are ω1 = ∂H

∂p1
= p1 and ω2 = ∂H

∂p2
= p2.

From the condition k1ω1 + k2ω2 = 0, we obtain the resonant lines p1 = −k2
k1
p2. The

motion follows the level curves in Figure 3.12a which are bounded and then it must
be transversal to the resonant lines, which cross the origin. As a consequence, the
motion is limited and this fact derives from the hypothesis of convexity of H0.

We consider now a non-convex Hamiltonian, for example

H(p1, p2, q1, q2) =
1
2
(p2

1 − p2
2) + εcos(q1 − q2). (3.33)
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Figure 3.12: Dynamics in the action space for a convex (a) and non-convex Hamil-
tonian (b).

The resonances are still the lines p1 = −k2
k1
p2 but the level curve are now open. The

resonances transversal to the resonance lines have a limited motion, but this is not
true for the resonances which coincide with the level curves, represented as solid
straight lines in Figure 3.12b. The motion can then escape, by following these open
lines.

We now come back to the geography of the resonances and we analyse the third
step in the geometric interpretation of the Nekhoroshev theorem. This step consists
in analysing the double resonance domains, centered around the resonance crossing
(the resonances of multiplicity 2), i.e the green zones in Figure 3.11. In such domains,
the Hamiltonian has two independent resonant terms of order smaller thanK. Then,
one can expect that these domains are characterized by strongly chaotic motions
and that frequencies can move in any direction of the plane around the resonance
crossing. However, again, this chaotic motion is bounded. Indeed, if the frequencies
moved far enough from the double resonance point, they would enter either the non-
resonant domain or one of the single resonant domains. This is impossible, since in
the non-resonant domain frequencies are fixed and in the single resonance domains
frequencies can change only along the fast drift direction.
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In conclusion, neglecting the exponentially small remainder RK , for each initial
condition, the motion is confined within one of the resonance domains. As a con-
sequence, frequencies and actions can change by at most a quantity equal to the
radius of the double resonance domains . Nekhoroshev proved that this radius is
proportional to εa, for some positive a < 1.

Moreover, in order to have a consistent picture as in Figure 3.11, the number of
resonances of order smaller than K must not be too large, otherwise there would not
be a place for the non-resonant domain and the construction of Figure 3.11 would
not possible. The fact that the largest resonance domains are of order εa gives an
upper bound of type 1

εb on the choice of K.
Finally, we take into account the exponentially small remainder RK . It is evident

that the remainder can force diffusion in every direction of frequency space, but
only with exponentially small speed. Then the result concerning bounded motion,
deduced by neglecting RK , will be true in principle only up to exponentially long
times.

The construction of the Nekhoroshev theorem can be iterated in order to explore
the dynamical structure of the system also for what concerns resonances of order
larger than Nekhoroshev’s threshold K ∼ 1

εb . In the non-resonant domain defined
above (denoted hereafter by GK), after the elimination of the resonances up to order
K, in the new action-angle variables (p′,q′), the Hamiltonian has the form:

H ′(p′,q′) = H ′
0(p

′) + εH ′
1(p

′,q′) with εH ′
1(p

′,q′) = RK(p′,q′). (3.34)

This is again a convex system, but the new perturbation is exponentially small with
respect to the original one, being ε′ ∼ exp(− 1

εb ). Then, applying the Nekhoroshev
theorem to this Hamiltonian, one proves the global stability of motion in GK for
super-exponentially long times, namely up to T ∼ exp(exp( 1

εb )) [45]. Moreover, one
finds a new non–resonant domain GK′ , characterized by the absence of resonances up
to order K ′. On GK′ one can introduce new action-angle variables so to transform
the Hamiltonian into the sum of an integrable part and a remainder RK′ , the latter
super-exponentially small. This procedure can be iterated and it is proved to be
convergent to a set of invariant KAM tori of large volume [45].

If the perturbation parameter was too large, the resonances overlap. In this case
there is no place for a non-resonant domain and invariant tori no longer exist. The
overlapping of resonances allows orbits to pass from one resonance to another, in a
fast so-called Chirikov diffusion (Figure 3.13).
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DOMAINS SHRINKS TO ZERO

THE VOLUME OF NO RESONANCE

Figure 3.13: Chirikov regime: overlapping of resonances.

3.2.3 The transition from the Nekhoroshev to the Chirikov regime

As we said in the introduction, the crucial question about the stability of the actions
in a Hamiltonian system is related to the structure and density of invariant tori
which foliate the phase space. This is in fact the geometrical representation of the
Nekhoroshev theorem. We recall that in a quasi-integrable system with Hamiltonian:

H(p,q) = H0(p) + εH1(p,q), (3.35)

non degenerate and convex, an eventual instability of the actions obeys the following
exponential law:

||p(t)− p(0)|| ≤ αεa, for |t| ≤ t0 e
(ε∗/ε)b

, (3.36)

where α, t0, ε∗, a, b are suitable positive constants. We say that a system is in a
Nekhoroshev regime when the diffusion of the actions is exponentially slow or equiv-
alently when the phase space is dense of tori.

For large values of the perturbation parameter, this description fails and diffusion
becomes a rapid phenomenon according to the well-known Chirikov criterion of
overlapping of resonances [9]. The transition from the Nekhoroshev to the Chirikov
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regime is a smooth process involving firstly the superposition of small resonances and
then going from a slow Nekhoroshev diffusion to a fast Chirikov one. Therefore, such
a slow diffusion is not easily recognized using even very long numerical integrations.
This transition will be discussed in Chapter 6 when numerical tools for the detection
of chaos will be developed.
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Chapter 4

The connectance

4.1 An introduction to the problem of the “connected-
ness”

In the last thirty years many studies have been devoted to the investigation of
the relationships between the properties of dynamical systems and their number of
degrees of freedom. In the seventies the problem of looking for the transition from
ordered to chaotic motion when increasing the number of interacting particles in
nonlinear systems has been studied both analytically and numerically, leading to
the conclusion that the measure of the chaotic domain with respect to the whole
phase space volume increases very rapidly with the number of degrees of freedom
[16],[6],[4].

We recall in particular the work of Froeschlé and Scheidecker [16], and the one
by Benettin, Froeschlé and Scheidecker in the same years [4]. These authors took
as a model problem an isolated one-dimensional self-gravitating system, consisting
of n plane infinitely-extended-parallel sheets with uniform density. They studied
its chaoticity when increasing the number of degrees of freedom, i. e. the number
of sheets, and confirmed that the measure of the chaoticity of the system increases
with the number of degrees of freedom. The authors remarked nevertheless that this
result could possible be different if the system were not maximally “connected”, in
other words if each degree of freedom was not directly coupled with each other. This
remark brings us directly to the problematic of the “connectedness”, i. e. whether
changing the fraction of direct couplings among degrees of freedom in a dynamical
system could affect its properties.

In particular, a problem which has been largely studied is the relation between
connectedness and stability in linear systems, for which there exist a wide range of
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applications in many contexts, from ecology to economics.
In Section 4.2 we will analyse the use of connectedness in nonlinear systems, while

in Section 4.3 and 4.4 we will move our attention to the linear case. The notion of
“connectedness”, which so far has not been rigorously defined, will be precised in
the following and termed connectance, how it is customary in the literature.

4.2 The connectance in the nonlinear case

In this Section we analyse in detail the previous problematic and describe two differ-
ent ways of “connecting”: the simple model of Fermi-Pasta-Ulam [49], [25], [14] and
a specific model consisting of a two-dimensional mapping introduced by Froeschlé in
1978 [17]. We will see that in the first case the connectedness is not a relevant pa-
rameter for the properties of the systems, while in the second one it plays a decisive
role.

4.2.1 Fermi-Pasta-Ulam

The model of Fermi-Pasta-Ulam (FPU) consists in a chain of n+ 2 particles over a
straight line (n moving particles, two fixed ones at the ends) interacting each other
with nonlinear strength. The corresponding Hamiltonian is:

H(x,y) = H2(x,y) +H3(x) +H4(x) (4.1)

with

H2 =
1
2

n∑

j=1

y2
j +

1
2

n∑

j=0

(xj+1 − xj)2,

H3 =
α

3

n∑

j=0

(xj+1 − xj)3, H4 =
β

4

n∑

j=0

(xj+1 − xj)4.

Here x1, ..., xn are the displacement with respect to the equilibrium position and
x0 = xn+1 = 0 are the fixed ends.

The normal coordinates are introduced via the canonical transformations (see
Section 3.1)

xj =

√
2

n+ 1

n∑

k=1

qksin
jkπ

n+ 1
, yj =

√
2

n+ 1

n∑

k=1

pksin
jkπ

n+ 1
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(qk, pk) being the new coordinates and momenta. The quadratic part of the Hamil-
tonian in the normal coordinates is given by the form

H2 =
n∑

j=1

Ej , Ej =
1
2
(p2

j + ω2
j q

2
j ) (4.2)

with harmonic frequencies

ωj = 2sin
jπ

2(n+ 1)
. (4.3)

The problem, as first stated in the paper of Fermi, Pasta and Ulam [14], is concerned
with the dynamical evolution of the harmonic energies Ej , as defined in (4.2). Ac-
cording to classical statistical mechanics the time average of each harmonic energy
should be the same (equipartition), at least in the harmonic approximation, i. e.

Ej = limT→∞
1
T

∫ T

0
Ej(t)dt =

E

n

where E is the total energy. Conversely, instead of a gradual, continuous flow of
energy from the first mode to higher modes, the system showed an entirely different
behaviour and this was a very surprising result which threw Fermi, Pasta and Ulam.
This problematic has been widely studied in the literature [32], [13], [22] and will not
be discussed in detail here. We are interested instead to the role of the connectedness
in the FPU. It is clear that in this simple model each particle interacts with the near
one, then the particles are not maximally connected, but they influence directly the
behaviour of their neighborings only. A possible question is whether increasing the
connectedness could influence or not the properties of the system.

In 1985 two studies on this subject were made by Giansanti, Pettini, Vulpiani
[25] and by Paladin and Vulpiani [49]. The authors investigated the role played by
an increase of connectedness respectively on the problem of the equipartion and on
the chaoticity of the system. They defined the connectance as the average number of
neighbor interacting masses in the chain. The original Hamiltonian is transformed
into:

H =
n∑

i=1

[
1
2
y2

i +
1
2
(xi+1 − xi)2 +

1
2

∑

j 6=i

1
4
βij(xi − xj)4] (4.4)

with xi = xi+n. The symmetric nonlinear coupling was defined by

βij = βNc, if j ∈ [i−Nc, i+Nc]
βij = 0, if j 6∈ [i−Nc, i+Nc]

(4.5)

where β is a positive constant and Nc is called the connectance number; in particular
for Nc = 1 one obtains the standard first-neighbor case. They obtained that the
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connectance has no relevant effect both on the equipartition and on the value of the
Lyapunov exponent (see Chapter 6) for a given chaotic orbit.

The connectance can have instead some influence on the volume of the chaotic
zone in the phase space. This will be discussed in the next Section, where we analyse
another dynamical model, in which the degrees of freedom are connected differently
from the FPU.

4.2.2 The Froeschlé 2n-dimensional mapping

A model different from the FPU which, even with a similar choice for the coupling
coefficients, allows more complexity in connecting the various degrees of freedom,
was studied by Froeschlé in 1978 [17]. In this paper he considered a n-dimensional
symplectic mapping T built from n two-dimensional area preserving mappings. The
mapping T is defined as :
{
Xi = xi + ai sin(xi + yi) + b

∑n
j=1 αij sin(

∑n
k=1 αjk(xk + yk))

Yi = xi + yi, ∀i = 1, ..., n
(4.6)

The coefficients αij are such that αij=αji and
{
αij = 1 for j − i < Nc

αij = 0 for j − i ≥ Nc
(4.7)

with j ≥ i. The interactions (which act as perturbations) are switched on or off
by setting to 0 or 1 the elements of the upper or lower diagonals of this matrix.
The connectance Nc is then defined as the number of non-zero upper and lower
diagonals, so to quantify the number of direct interactions. The larger is the number
of coefficients αij equal to 1, the larger is the number of direct couplings among the
degrees of freedom. When Nc = 1, the mapping is the product of n two-dimensional
mappings Ti,

Ti =

{
Xi = xi + (ai + b) sin(xi + yi)
Yi = xi + yi

(4.8)

When Nc=n the connectance between the mappings is maximal and each mapping
interacts directly with the others with the same strength.

The author did not study the equipartition of energy, as in FPU, but he was
mainly concerned with the emergency of chaos in such a coupled system. He mea-
sured the size of the non-chaotic zone about a given elliptic equilibrium point and
found that it depends not only on the number of degrees of freedom but also on the
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connectance. Fixed n = 15, for Nc = 3, 6 the size of the integrable zone remains
more or less constant, while for Nc = 9 this integrable region has completely dis-
appeared. This suggests that there exists a critical value of Nc which determines a
drastic transition from an integrable to a chaotic regime. The author investigated
the dependence of this critical value on the dimension of the system as well, finding
that if n is quite large (n ≥ 20) it seems to become independent of n.

Moreover, he focused his attention on the strength of interaction. For Nc =
1
2(n + 2) if n is even and for Nc = 1

2(n + 1) if n is odd, each mapping interacts
directly with the others but not with the same strength. If we take for example
n = 3, we have Nc = 2 and then the zero coefficients αij are only α13 and α31. We
have then for X1 the equation:

X1 = x1 + a1 sin(x1 + y1) + b{α11 sin(α11(Y1) + α12(Y2)) +
α12 sin(α21(Y1) + α22(Y2) + α23(Y3))}

= x1 + a1 sin(x1 + y1) + b{sin(Y1 + Y2) + sin(Y1 + Y2 + Y3)}. (4.9)

The problem at this point is twofold.
On one hand, even if α13 = 0 the first and the third particle interact among them.

In general having a zero element αij is not a sufficient condition to avoid a direct
coupling between the particles i and j, so the coefficients do not really represent the
interactions between the degrees of freedom. While in FPU it was simple to count
the number of interactions, in the model of Froeschlé this is not so immediate.

The second problem, which is more complicated, concerns the “multiplicity” of
the interactions. If we turn our attention to the previous example, we can see that
the first particle interacts once with the third particle (the equation for X1 contains
X3 with the coefficient equal to 1) and twice with the second particle (the equation
for X1 contains X2 with the coefficient equal to 2). This shows that the “intensity”
of the interaction is not always the same and in general it is not possible to connect
each particles with all the others with the same strength of interaction. Thanks to
these simple examples we can realize that it is not trivial to define the connectance
unambiguously in the nonlinear case.

The situation is much more clear in the linear case in which the connectance
corresponds exactly with the interaction among the degrees of freedom. We will
analyse this problematic in detail in the next Sections.
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4.3 The connectance in the linear case: the matrix of
connectance

If we fix our attention to a linear system, it becomes simple to introduce a tool to
measure the interactions among the degrees of freedom. If we consider the linear
system

ẋ = Mx (4.10)

where M is a real n× n matrix, we can define the connectance C as the fraction of
the non-zero off-diagonal elements mi,j of the matrix M . Its value is given then by
the expression:

C =
C1

n2 − n

where C1 is the number of non-zero off-diagonal terms. In all cases the diagonal
self-coupling terms are taken different from zero. The connectance varies then in
the interval [0, 1]: if C = 0, M is a diagonal matrix, while if C = 1, all the elements
are different from zero. A matrix element mi,j 6= 0 denotes a direct interaction
between the variables i and j, while if mi,j = 0 there is no direct interaction.

Once defined the connectance, two issues must be analysed: how to dispose the
elements in the matrix for a fixed connectance and how to assign the values of the
non-zero elements.

For what concerns the positioning of the elements, two strategies will be consid-
ered in the following. The first one, called ordered connectance, consists in progres-
sively connecting by starting from a diagonal matrix and filling completely the most
internal non-zero upper and lower diagonals. For example, if n = 3 and C = 4

6 , the
only possibility is the following one:

M1 =



m11 m12 0
m21 m22 m23

0 m23 m33


 .

This way of connecting is very particular and, in fact, does not allow to have many
values of C if n is not sufficiently large. For example, when n = 3 the connectance can
take only the values C = 0, 4/6, 1. The ordered connectance is then not optimal for
a study concerning the transition from weakly connected to fully connected systems
when the number of degrees of freedom is small.

The second strategy, which we call non-ordered connectance, consists in choosing
randomly the location of the non-zero elements outside the main diagonal. For
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example, always for n = 3 and C = 4
6 , two different possibilities can be:

M2 =



m11 m12 m13

m21 m22 0
m31 0 m33


 M3 =



m11 m12 m13

m21 m22 0
0 m32 m33


 .

In this way we have more possible values for the connectance, but we do not decide
“a priori” the position of the interactions.

Clearly the two kinds of connectance correspond to different problems, and in
the following we will analyse both cases.

The second problematic concerns the possible values for the filled elements of
the matrix. We recall that in the paper of Froeschlé they can assume only the value
1, while in the pioneer work of Gardner and Ashby (Section 4.3.1) the elements
are drawn in a random way from some given interval. Both ways of choosing the
elements will be examined in Chapters 5 and 6.

4.3.1 The results of Gardner and Ashby

The first study concerning the role of the connectance in the study of linear systems
was made by Gardner and Ashby in 1970 [23]. They considered the linearization of
a dynamical system about an equilibrium point, reducing it to a system of ordinary
differential equations

ẋ = Mx (4.11)

where M is a real n × n matrix. The connectance C was defined here for the
first time as the fraction of non-zero non-diagonal elements in the matrix, and was
taken randomly, according to our definitions in the previous Section. The non-zero
elements of the matrix were chosen as random uniform variables belonging to some
interval. In particular, the diagonal terms were taken in the interval [−1,−0.1],
so that the individual variables i were assumed to be intrinsically stable. The off-
diagonal ones belonged instead to [−1,+1].

According to the classical result that the system is stable when all the eigenvalues
of M have negative real part, they computed the eigenvalues of a set of N = 1000
matrices and tested them for stability, when changing the connectance. They defined
the probability of stability α(n,C) as the fraction of stable systems among all the
N randomly chosen ones. The curve of Gardner and Ashby is reproduced in Figure
4.1.

α(n,C) was computed for n = 4, 7 and 10 and in general it depends both on the
connectance and on the dimension of the system. For C = 0 the resulting diagonal
matrix is evidently stable. For a given n, α(n,C) decreases monotonically with C
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Figure 4.1: Gardner and Ashby experiment: probability of stability α(n,C) as a
function of the connectance C for n = 4, 7, 10.

and when increasing n the probability α(n,C) drastically drops to 0 even for low
values of C. In other words, the larger is n, the greater is the rate of decrease.
Gardner and Ashby argued that there should exist a critical value Ccrit for large n,
so that α(n,C < Ccrit) ∼ 1 and α(n,C > Ccrit) ∼ 0. A sudden change of behaviour
should occur in the vicinity of Ccrit.

4.4 The connectance: an interdisciplinary tool

Since Gardner and Ashby’s work the concept of connectance in linear systems has
been applied to many contexts, in particular ecology and economics. For the ecol-
ogists community the connectance, intended as the number of links among living
species, gives in fact some measure of the complexity in an ecological system, while
in economics the connectance can be applied to the study of the equilibria of inter-
dependent markets.
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4.4.1 Application to ecology

Linear systems are used in ecology to modelize the dynamical behaviour of a so-called
food web. Loosely speaking, a food web is defined as the multitude of relationships
between species in a biotic community. This concept is translated into mathematical
language as follows. Let i and j denote two biological species and xi and xj the
number of organisms belonging to species i and j. In a system with n species, the
set of all possible relationships among them is modeled at the lowest order by a
n × n Jacobian matrix of interaction coefficients mi,j that describe the impact of
each species i on the growth of each species j. The connectance associated to this
matrix is understood as “complexity” in this context. In food webs the type of
relationship between the species i and j can be classified according the signs of the
entries of the matrix: if mi,j > 0, i increases owing to the existence of j, whereas if
mi,j < 0, j effects i negatively. There are four possible relationships:

mi,j < 0 , mj,i < 0 → negative feedback
mi,j > 0 , mj,i < 0 → predator/prey
mi,j > 0 , mj,i > 0 → cooperation
mi,j < 0 , mj,i > 0 → prey/predator

In 1972 May [41] reconsidered Gardner and Ashby’s results in a food web context.
By analytic considerations, he extended Gardner and Ashby’s work to an infinitely
large number of variables, agreeing with the fact that randomly generated food webs
decrease in stability as they increase in complexity.

In 1974 Daniels and Mackay [12] repeated the same numerical calculations of
Gardner and Ashby, but they found a slightly different result. They confirmed
the decrease of stability when increasing the connectance, but the transition from
stability to instability was not so sharp and the critical value Ccrit conjectured by
Gardner and Ashby was not found. Moreover, in Figure 4.2 we can see that their
curves (the solid lines) are more stable than Gardner and Ashby ones (the dotted
lines).

This contradictory result was furtherly studied in 1986 by Martens [40]. He
restricted his attention on the case of C = 1 and showed that Daniels and Mackay
were not wrong. In his paper he resumed the debate among the previous different
results and concluded that the discrepancy is due to a numerical instability in the
computation of the eigenvalues.

In fact, we confirme ourselves the stability results found by Daniels and Mackay
by a numerical experiment which will be described in Section 5.1.

The fundamental point of all these results is the decrease of stability when in-
creasing the connectance. This was paradoxical to many ecologists who experience
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Figure 4.2: Percentage of stable systems versus connectance according to Daniels
and Mackay: comparison between their results (solid lines, a, c, d) and those of
Gardner and Ashby (dotted lines, b, e, f). a,b: n=4; c,e: n=7; d,f: n=10.

the opposite pattern in nature. It seems in fact that in real food webs complexity
helps to increase stability rather than to diminish it. A way out of this paradox was
to reconsider the dynamics of real food webs, by taking more complex networks,
characterized by structured interactions, species “strategy” and dynamical charac-
teristics that would allow complex communities to persist. This is translated into
choosing the matrix elements in more complicated ways, not simply as random num-
bers in a given interval. May himself in 1999 [42] commented on the actual state
of food webs theory, affirming that real ecosystems are not randomly constructed
and therefore his results do not apply to real-world networks, which are much more
structured.

As an example of a recent study which couples modern ecological considerations
to mathematical modeling, in 2000 Wilmers, Sinha and Brede [55] reconsidered
the dynamics of interactions in food webs. They examined the stability properties
of differents food web configurations and added hierarchical structures to them. In
particular, they compared the case of food webs characterized by completely random
interactions with systems in which a high percentage of prey - predator relationships
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is imposed. In this latter case, which is supposed to be dominant in nature, off-
diagonal symmetric elements in the Jacobian matrix are taken with opposite sign.
They repeated the Gardner and Ashby’s experiment with these two choices of food
webs and found that for a given value of C (C = 0.11) the “realistic” prey - predator
food web has a larger probability of stability than the random one. Their result is
shown in Figure 4.3, where stability is plotted against the standard deviation of
the interacting coefficients for C = 0.11. Standard deviation and connectance are
in fact functions of each other, so for a given standard deviation it corresponds a
given connectance. The problem is that in all their experiments they never found
an increase of stability with the connectance, as expected by the ecologists. This is
the fundamental point, and until now in ecology no simple linear model has been
found allowing an increasing of the stability with the connectance.

4.4.2 Application to economics

Another field concerning the relationship between connectance and stability in linear
systems is economics, with regards to the stability of equilibria of interdependent

Figure 4.3: Wilmers, Sinha and Brede experiment: stability of food webs with
hierarchical structures for C = 0.11 and n = 100 as a function of the standard
deviation of the interaction coefficients.
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markets. A study on this subject was done by Froeschlé and Longhi in 1987 [21]
and then deepened by Froeschlé, Lega and Lohinger [20] and Cosentino, Lega and
Froeschlé [11]. They studied the stability-connectance relation in an economic sys-
tem of n goods characterized by a vector of prices ~p = (p1, ..., pn). The time evolution
of prices is regulated by the market law of supply and demand. They defined the
excess demand Ei as the difference between the global demand and the global supply
for the good i obtained for a given vector of prices: Ei = Ei(~p). Then, the evolution
of prices with time is defined by the set of equations:

ṗi = gi[Ei(~p)] ∀i = 1, .., n (4.12)

where gi is a regular increasing function which is 0 at the origin. The vector ~p∗ =
(p∗i , ..., p

∗
n) such that Ei(~p∗) = 0 ∀i is said to be the vector of prices in general

equilibrium. By linearizing the set of equations (4.12) we get:

~̇P = M(~p∗)~P (4.13)

where ~P = (~p−~p∗) and M is the Jacobian matrix of ~g, i.e. the matrix which defines
the relationships between the n independent markets. The authors simplified then
the problem taking gi[Ei(~p∗)] = biEi(~p∗), with bi > 0 (∀i), which for the elements of
M gives mi,j = bi∂Ei(p?)/∂pj . The diagonal elements mi,i represent the influence
exerted by a variation of the price of the good i on its global demand, while the
off-diagonal terms mi,j represent the influence exerted by a variation in the price of
the good j on the global demand for the good i. To fix the terminology, if mi,j > 0
the good j is said to be a substitute of the good i, while if mi,j < 0 the good j is
said to be complementary to the good i.

Substitute goods play in some sense the same role: as an example, honey (good
i) and sugar (good j) are sustituable and this is reflected in the fact that an increase
of the price of sugar results in an increase of the demand for honey (interaction
modeled by a positive mi,j).

Complementary goods are for example spaghetti (good i) and sauce (good j):
an increase of the price of sauce will produce a decrease in the demand for spaghetti
(interaction modeled by a negative mi,j).

Froeschlé and Longhi [21] studied then the stability α of the linear system
ẋ = Mx as a function of the connectance, a problem perfectly analogous to the
one studied in the food webs context. In particular, they studied the effects of sub-
stitutability/complementarity on the stability, i.e. the effect of varying the fraction
of off-diagonal elements with positive/negative signs in the matrix M . They not
only confirmed the results of Mackay and Daniels, but they searched the conditions
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Figure 4.4: Probability of stability α as a function of the connectance C for different
percentages of substitutable and complementary goods. The off-diagonal terms are
uniformly distributed in the interval [b, 2 + b]. The value of b is printed near each
curve. For b = −1.8 we have a mean of 10% of complementarity, while for b = −0.2
we have a mean of 90% of substitutability. We have the maximal stability for b = −1
which is equivalent to a mean of 50% of substitutable goods.

for maximal stability finding that the maximal stability is obtained for 50 % of sub-
stitutable goods. By choosing the off-diagonal terms as random variables in a given
interval, this coincides with taking this interval symmetric with respect to 0. The
result is plotted in Figure 4.4.

This result seemed in contradiction with the general equilibrium theory, for which
total substitutability is considered a sufficient condition for stability. In fact there
is no contradiction, because the general theory of equilibria supposes tacitly the so-
called Walras law, which states that in a market of n+ 1 goods in which one plays
the role of money and has no dynamical role, for any vector ~p of prices

n+1∑

i=1

piEi(~p) = 0. (4.14)

Froeschlé and Longhi demonstrated that the Walras law implies the condition that
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for every line of the matrix M , the sum of their elements is smaller than zero, i.e.

n∑

j=1

mi,j < 0 ∀ i = 1 . . . n. (4.15)

Then, if we want to have any chance to satisfy the Walras law, we have to impose
this restriction to the matrix.

Froeschlé and Longhi remarked that coupling this condition with the total substi-
tutability implies that the matrix M satisfies the quasi-diagonal dominance criterion
[43]. This criterion is a necessary condition for the stability of the system and states
the following:

Quasi-diagonal dominance criterion

Given a n× n matrix M , if the diagonal terms mi,i are negative and there exists a
set of positive numbers wi > 0, i = 1 . . . n such that:

wi|mi,i| >
∑

j 6=i

wj |mi,j | ∀i = 1, . . . , n (4.16)

then all the eigenvalues of M are negative.

Equation (4.16) implies that the relevant parameters for stability are the diagonal
terms with respect to the sum of the modules of the off-diagonal terms, i.e the relative
size of the intervals from which the diagonal and off-diagonal terms are drawn. With
the restriction (4.15), the matrix M satisfies exactly the condition (4.16) with all
the weights equal to 1 and then the equilibrium is stable.

In Figure 4.5 is displayed the same experiment as in Figure 4.4, but with the
constraint (4.15) imposed. The off-diagonal terms belong to the interval [b, 2 + b],
with b going from −2 to −0.2, so for b = −2 all goods are complementary and for
b = −0.2 there is 90% of substitutability. According to the previous discussion,
one can see how in this case increasing the substitutability raises the probability
of stability, because the chance of having a matrix satisfying the quasi-diagonal
criterion is augmented.

Since this work, in the economics community it become common to try to adjust
the parameters of an economic system to achieve the quasi-diagonal dominance
condition in order to stabilize equilibria. In Section 5.2, we will show that this
procedure is not optimal, because this criterion for stability is far from being sharp.
Moreover, we will point out the relationship with this condition and a more general
series of results known as Geršgorin (or Geršgorin-like) theorems.
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Figure 4.5: Probability of stability as a function of the connectance for different
percentages of substitutable goods and the condition (4.15) imposed. The dimension
is n = 20 and the diagonal elements belong to the interval [−2.5,−0.1]. The off-
diagonal terms are uniformly distributed in the interval [b, 2 + b]. The value of b
is printed near each curve. For b = −2 all the goods are complementary (and the
stability is minimal), while for b = −0.2 we have a mean of 90% of substitutability
(maximal stability).
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Chapter 5

Linear stability and connectance

In this Chapter we reconsider the experiment of Gardner and Ashby discussed in
Chapter 4, taking randomly constructed linear systems and studying their probabil-
ity of stability as a function of the connectance. We present some new results, which
are related to some open issues faced by both the ecology and the economics commu-
nities. On one side, we critically revise the relevance of the quasi-diagonal dominance
criterion as a guide to enforce stability, and we point out how this criterion is part of
a more general framework known as Geršgorin Theorem. On another side, we per-
form a general study on the influence of the distribution of the interaction coefficients
on the stability behaviour of interacting systems. In particular, we will show as in
appropriate regimes the stability can actually increase with the connectance, a fact
which has been excluded so far. This behaviour is characteristic of systems termed
in ecology competitive, i.e. such that the interaction coefficients among species are
all negative. We finally address the dependence of the connectance/stability rela-
tionship on the size of the system and on the main value of the interaction strength.
These results are published in [10].

5.1 Linear stability and connectance: basic statements

We briefly recall the main definitions and issues related to the connectance problem.
Given a n-dimensional dynamical system ẋ = f(x), we focus our attention to the
study of its linear stability about an equilibrium point. Linearization leads to a
system of ordinary differential equations

ẋ = Mx (5.1)

where M is a real n× n matrix.
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We choose as definition for the connectance C the one introduced in Section 4.3,
coinciding with Gardner and Ashby’s one. C is then the fraction of non-zero off-
diagonal elements mi,j of the matrix M . In general the connectance will be chosen
non-ordered, apart for a single experiment in which a comparison with the ordered
case is performed.

We calculate the probability of stability over a given set of N matrices as a
function of C. In all the following experiments we take N = 1000 if not otherwise
specified, and 101 values of the connectance between 0 and 1. For each matrix we
compute the eigenvalues in order to say if the system is stable or not, considering
the system as stable if all its eigenvalues have negative real part. As discussed in
Chapter 2, this is equivalent to select all systems which are asymptotically stable.
We define the probability of stability α as the fraction of stable systems among all
the N randomly chosen ones.

The non-zero elements of the matrices satisfy the relations :
{
mi,i = u[a1, a2] ∀i, i = 1, ..., n
mi,j = u[b1, b2] ∀i, j j 6= i, i, j = 1, ..., n

(5.2)

where u[x1, x2] denotes a random uniform variable belonging to the interval U =
[x1, x2]. We denote UD and UOD the intervals from which we draw the diagonal and
off-diagonal terms respectively. The diagonal elements will be taken always negative,
to ensure stability when C = 0.

As an introduction, we perform a first experiment by choosing the same condi-
tions as Gardner and Ashby, i.e. we take UD = [−1,−0.1] and UOD = [−1, 1] and
three values of the matrix dimension: n = 4, 7, 10. The result is plotted in Figure
5.1. We can observe the same discrepancy with the Gardner and Ashby experiment
(Figure 4.1) as explained in the previous Chapter.

To obtain a more complete result, we calculate the probability of stability for
a larger number of degrees of freedom. We take then the same UD = [−1,−0.1]
and UOD = [−1, 1] and ten values of the matrix dimension n = 10, 20, 30, ...100.
It is evident that α depends both on the connectance and on the dimension of the
system. For C = 0 the resulting diagonal matrix is evidently stable. For a given n, α
decreases monotonically with C and when increasing n the probability α drastically
drops to 0 even for low values of C (Figure 5.2). In the following Chapters we will
see as this behaviour is in fact non universal, but it depends on the way of choosing
the matrix coefficients.
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Figure 5.1: Probability of stability α as a function of the connectance for three
different values of n (n = 4, 7, 10) and diagonal interval UD = [−1,−0.1], off-diagonal
interval UOD = [−1, 1].
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Figure 5.2: Probability of stability α as a function of the connectance for different
dimensions n of the system and diagonal interval UD = [−1,−0.1], off-diagonal
interval UOD = [−1, 1].

69



5.2. The diagonal dominance criterion revisited. The Geršgorin Theorem and its
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5.2 The diagonal dominance criterion revisited. The
Geršgorin Theorem and its practical applicability

We saw in Section 4.4 that the quasi-diagonal dominance criterion has been used
(especially in economics) as a guide to predict a priori the probability of stability
for a given equilibrium, or even to optimize the coupling coefficients among degrees
of freedom in order to maximize the stability for a given connectance.

This criterion derives in fact from a more general set of theorems [53], from
which is nevertheless difficult to extract practical informations when n is large. The
only one which can be easily used is the Geršgorin theorem [24] which states the
following:

Geršgorin theorem

For any n ≥ 2, let M = [mi,j ] ∈ lCn×n a n× n complex matrix and let σ(M) = {λ ∈
lC : det[M − λIn] = 0} denote its spectrum. Let define by

Gi(M) = {z ∈ lC : |z −mi,i| ≤ ri}, ri =
∑

j 6=i

|mi,j |, i = 1 . . . n (5.3)

the ith Geršgorin disk in the complex plane.
Then the set of the eigenvalues of M is contained in the union of these disks:

σ(M) ⊆
n⋃

i=1

Gi(M). (5.4)

In Figure 5.3 there is the geometric representation for a matrix M4×4 with real
elements.

A more complete result is given by the following

Generalized Geršgorin theorem

Given a matrix M = [mi,j ] ∈ lCn×n and w = [w1, ..., wn]T > 0 ∈ IRn, consider the
matrix product W−1MW = [mi,jwj

wi
] where W := diag[w1, ..., wn]. Since M and

W−1MW are similar matrices, σ(M) = σ(W−1MW ).
By setting now

rwi :=
∑

j 6=i

wj |mi,j |/wi, ∀i ∈ IN (5.5)
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Figure 5.3: Geometric representation in the complex plane of the Geršgorin theorem
for a matrix M4×4 with real elements. The set of eigenvalues is contained in the
union of the disks.

the Geršgorin theorem, applied to W−1MW , gives

σ(M) = σ(W−1MW ) ⊆
n⋃

i=1

{z ∈ lC : |z −mi,i| ≤ rwi (M)} =: Gw(M). (5.6)

As this eigenvalue inclusion holds for each w = [w1, ..., wn]T > 0 ∈ IRn, we have

σ(M) ⊆
⋂

w>0

Gw(M) (5.7)

i.e. the spectrum is included in the infinite intersection of the unions of all Geršgorin
disks, every disk being built with a weighted radius. We will call Geršgorin criterion
for stability the condition that the intersection on the right-hand side of (5.7) lies
on the negative complex plane.
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From this theorem it can be readily derived the quasi-diagonal dominance sufficient
condition (4.16) for stability. In fact, if (4.16) is satisfied for a set of weights w̄,
then Gw̄(M) lies on the negative complex plane, so the whole spectrum lies on the
negative complex plane and the matrix is stable.

It turns out that, when the off-diagonal terms are all positive, the inclusion in
equation (5.7) becomes an equality, i.e.

σ(M) =
⋂

w>0

Gw(M) (5.8)

so the Geršgorin criterion (and the quasi-diagonal dominance one) becomes a neces-
sary and sufficient condition for stability [51]. This is in general not true if the sign
of the off-diagonal terms is not positive defined.

As explained in Section 4.4, for some applications such as economics [21] a clas-
sical strategy to maximize the likelihood of equilibria stability consists in forcing
the system to satisfy the quasi-diagonal dominance, but considering only a single
set of weights w̃ (usually w̃i = 1 ∀ i). We can suspect that, even in the necessary
and sufficient case for which the equality (5.8) is satisfied, this procedure consisting
in replacing the intersection

⋂
w>0 Gw(M) with a single set Gw̃(M) is far from be-

ing sharp. You could in fact expect that a matrix is very often stable even when
Gw̃(M) does not lie on the negative complex plane. We check this issue by taking
a set of off-diagonal positive definite matrices of size n = 50 with UOD = [0, 0.1]
and UD = [−1,−0.1], and evaluating the finite intersection over 10p randomly dis-
tributed weights wi ∈ (0, 1), for p = 3, 4, . . . , 8. In Figure 5.4 we plot the fraction γ
for which the finite intersection lies on the negative complex plane, compared to the
real fraction of stable matrices α. It is evident that when increasing p the curves
γ(C) converge extremely slowly to the real stability curve α(C), so this approximate
criterion gives very little information and it is difficult to made it sharp by choosing
a large number of weights. The result does not get better when the wi belong to a
larger interval (not shown), nor taking simply all the wi equal to one (Figure 5.4,
dark dashed line).

A second aspect concerns the discrepancy between the spectrum σ(M) and the
intersection

⋂
w>0 Gw(M) when the inclusion (5.7) is not an equality, i.e. when the

sign of the off-diagonal terms is not positive defined. At this purpose, we calculate
α(C) for n = 100, UD = [−1,−0.1] and three off-diagonal intervals having the same
distribution for the module of their elements: UOD = [−0.1, 0], UOD = [−0.1, 0.1]
and UOD = [0, 0.1]. In these three cases the intersection

⋂
w>0 Gw(M) is likely to be

the same. The result is plotted in Figure 5.5. We remark that in the first two cases
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Figure 5.4: Light lines: probability of stability γ as a function of the connectance
according to the quasi-diagonal dominance criterion for 10p weights wi ∈ (0, 1) and
different values of p. Dark dashed line: same with all the weights equal to 1. Dark
solid line: probability of stability α from direct eigenvalues computation.

the fraction of stable matrices largely exceeds the one calculated in the third case,
which in turns coincides with the prediction of the Geršgorin criterion. In other
words, when the matrix elements are not positive the sharpness of the Geršgorin
criterion in checking for stability is very small, making it an inefficient guide to
enforce stability of equilibria.

It is interesting to remark that for UOD = [−0.1, 0] α shows a non-monotonic de-
pendence on C, becoming larger when the matrix is fully connected. This behaviour
is not possible when the off-diagonal matrix elements are drawn from a positive
interval UOD = [0, b2]. In this case matrices with a size n and a connectance C
will have the same stability properties if the parameter nCb2 is kept constant, the
right-hand side of equation (4.16) scaling statistically as nCb2. This implies that
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Figure 5.5: Probability of stability α as a function of the connectance for n =
100, diagonal interval UD = [−1,−0.1] and off-diagonal intervals UOD = [−0.1, 0.1]
(dotted line), UOD = [−0.1, 0] (solid line), UOD = [0, 0.1] (dashed line).

the probability of stability can just decrease when increasing C, n or the amplitude
of UOD. The counter-intuitive behaviour seen for UOD = [−0.1, 0] will be termed
stability recover phenomenon in the following. Its appearance, characteristic of com-
petitive systems only, will be extensively studied in the following Sections along with
the conditions for its realization.

We analyse now the connectance-stability behaviour in a case of ordered con-
nectance. We consider two cases: positive off-diagonal elements (UOD = [0, 0.1]), for
which the Geršgorin criterion for stability is necessary and sufficient, and negative
off-diagonal elements (UOD = [−0.1, 0]), for which the stability recover phenomenon
appears. Moreover, we take UD = [−1,−0.1] and n = 100. The stability curves
are plotted in Figure 5.6, along with the corresponding results for the non-ordered
connectance. One can remark how in both cases for the ordered connectance the
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Figure 5.6: Probability of stability α(C) for the ordered and the non-ordered con-
nectance. The dimension is n = 100 and the diagonal and off-diagonal intervals are
UD = [−1,−0.1] and UOD = [−0.1, 0], UOD = [0, 0.1].

probability of stability is smaller than for the non-ordered one. We analyse this re-
sult when UOD = [0, 0.1]. In this case we recall that in order to check for stability it
is sufficient to analyse the position of the Geršgorin disks in the complex plane (see
Figure 5.3). Take then a given value of the connectance. For the ordered case, the
number of non-zero elements on each line of the matrix is fixed, so the distribution
of the radii is expected to be uniform, while for the non-ordered case there is a range
of possibilities, going from matrices with all the lines equally filled to matrices with
some empty lines and some full lines, so there is a non-uniform distribution for the
radii. This is true even when the weights are considered. Fix then a connectance
value and a matrix which is unstable for the ordered case. Many non-ordered cases
will correspond to it, some still unstable, but some stable, because now it can hap-
pen that the largest radii fall all on the left in Figure 5.3. So it is not surprising
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that the non-ordered case has a larger stability than the ordered one.
When UOD = [−0.1, 0] this properties is even more evident, but the previous

simple argument is not directly applicable, the Geršgorin criterion not being neces-
sary and sufficient. Because we are interested to cases in which the stability is as
large as possible, in the following we will treat the case of non-ordered connectance
only.

5.3 The stability recover phenomenon: the choice of the
coefficients

5.3.1 Stability properties when the diagonal or the off-diagonal
terms are fixed

First of all, we want to investigate the behaviour of the function α(C) for C close to
1. To this purpose, we analytically address the simple fully-connected case in which
the matrix M is given by:

{
mi,i = a ∀i i = 1, ..., n
mi,j = b ∀i, j j 6= i i, j = 1, ..., n.

This matrix has n−1 eigenvalues equal to a−b, while the nth one equals a+(n−1)b.
This can be rapidly shown by taking a matrix B with all elements equal to b. B has
at least one eigenvalue equal to 0 (because detB = 0) with multiplicity n−1 (because
rank(B) = 1, so ker(B) = n − 1). The other eigenvalue equals then Tr(B) = nb.
One remarks now that adding to a matrix the same value d to its diagonal, the
eigenvalues are augmented by the same quantity d. Then we recover the eigenvalues
for M by adding a− b to the diagonal of B.

A necessary and sufficient condition for the stability is then |a| > |b| if a, b < 0,
and |a| > (n − 1)|b| if a < 0, b > 0. If all the matrix elements are negative, the
stability condition is independent of the dimension n and much less restrictive than
the Geršgorin criterion. It obviously coincides with this latter for a < 0 and b > 0,
for wi = 1 in this specific case.

We address now numerically the more general case of a, b < 0 taken randomly
in a given interval and C between 0 and 1.

We first take the same off-diagonal values b = −0.09 and use different diagonal
intervals UD = [a1,−0.1] with a1 = −0.1,−0.2,−0.5,−1. The stability curves α(C)
for n = 100 are plotted in Figure 5.7 (light lines). In this case characterized by
diagonal elements drawn from a non-zero amplitude interval UD = [a1, a2] such that
a2 < b, α is still 1 for C = 1 and raises suddenly from 0 when C approaches 1.
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Figure 5.7: Probability of stability α(C) for n = 100. Light lines: UOD = {−0.09}
and four diagonal intervals UD = [a1,−0.1] with a1 = −0.1,−0.2,−0.5,−1 (from
solid to long dashed lines). Dark solid line: UOD = {−0.11} and UD = [−1,−0.1].

Moreover, extending the possible diagonal values to more negative numbers widens
the range of C for which α is sensibly different from 0. Conversely, when a2 > b
this result does not hold anymore, the probability of stability for C = 1 being about
0.98 for b = −0.101 (not shown) and only about 0.37 for b = −0.11 (Figure 5.7,
dark curve). On these grounds, we will concentrate in the following on the case of
intervals UD = [a1, a2] and UOD = [b1, b2] with a2 < b1, for which α(1) is likely to
be maximal.

We investigate now the effect of widening the off-diagonal interval, by keeping
the same diagonal elements equal to a = −0.1. We analyze here for simplicity the
case C = 1. For n = 100, we take UOD = [−0.09,−0.09 + β] with 0 < β ≤ 0.09.
The stability is rapidly lost when increasing β, such that already for β = 0.02 the
fraction of stable matrices at C=1 is 0 (see Figure 5.8).
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Figure 5.8: Diagonal elements all equal to a = −0.1, off-diagonal interval UOD =
[−0.09,−0.09 + β], n = 100. Probability of stability α for C = 1 as a function of β.

5.3.2 The distribution of the largest eigenvalue for C = 1 and fixed
diagonal terms

To shade some light on the previous behaviour, we study in the same cases (diagonal
terms equal to a = −0.1, UOD = [−0.09,−0.09 + β] with 0 < β ≤ 0.09, n = 100)
the distribution of the largest eigenvalue λmax, which determines the stability and
is equal to λmax,0 = −0.01 when β = 0. For a better statistics we use only for this
experience a set of 105 matrices. A few histograms are plotted in Figure 5.9 for
different values of β. The distribution of λmax has a bell-shape with a higher tail on
the right side, and its mean value λ̄max is consistent with a law of the kind:

λ̄max − λmax,0 = κβ/2 (5.9)

where κ is a proportionality factor depending on the matrix size n. This experimental
law is plotted in Figure 5.10 (top). The coefficient κ respects an approximate scaling
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Figure 5.9: Diagonal elements all equal to a = −0.1, off-diagonal interval UOD =
[−0.09,−0.09 + β], n = 100. Probability density p(λmax) for the distribution of the
real part of the largest eigenvalue for β = 0.001, 0.002, 0.004, 0.005.

κ ∝ √
n, as shown in Figure 5.10 (bottom) where λ̄max − λmax,0 is plotted against√

n keeping β constant (UOD = [−0.09,−0.07]).
Widening the off-diagonal interval corresponds then to destroy the stability for

C = 1, making impossible a stability recover at high connectance. One can try to
recover stability by taking lower values for the diagonal terms.

5.3.3 Stability properties when varying both the diagonal and the
off-diagonal intervals

On the previous grounds we now go back to a diagonal interval UD = [−1,−0.1],
considering the whole dependence on C. The probability of stability α(C) is plotted
in Figure 5.11 for UOD = [−0.09,−0.09 + β] and β = 0, 0.02, 0.04, 0.05, 0.07, 0.09.
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Figure 5.10: Diagonal elements all equal to a = −0.1, off-diagonal interval UOD =
[−0.09,−0.09 + β]. Top: for n = 100, values of λ̄max as a function of β and corre-
sponding linear fit. Bottom: values of λ̄max as a function of

√
n for β = 0.02 and

corresponding linear fit.
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Figure 5.11: Probability of stability α(C) for n = 100, UD = [−1,−0.1] and six
off-diagonal intervals UOD = [−0.09,−0.09 + β]. From the dark solid line to the
light solid line (bottom to top), β = 0, 0.02, 0.04, 0.05, 0.07, 0.09.

Taking a more negative diagonal a partial stability is recovered for C = 1, while the
fast decreasing of α at low C persists. The net effect is a minimum of stability for
intermediate values of C.

We conclude that even in non-trivial situations in which the diagonal and the off-
diagonal coupling coefficients are distributed in a given interval, one can increase the
probability of stability at high connectance by choosing non-overlapping intervals
UD, UOD, such that UD be wide enough and UOD be narrow enough, both containing
only negative terms.

We now proceed by refining this rule of thumb. To stress the importance of
the non-superposition criterion between diagonal and off-diagonal intervals as a way
to recover stability at high C, we perform two series of experiences with UOD =
[−0.2, 0]. We first take UD = [−1 − δ1,−0.1] varying δ1 from 0 to 0.4 to widen the
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Figure 5.12: Probability of stability α(C) for n = 100 and off-diagonal interval
UOD = [−0.2, 0]. Top: UD = [−1,−0.1] (light solid line); UD = [−1− δ1,−0.1] and
δ1 = 0.1, 0.2, 0.4 (light respectively long-dashed, dashed and dotted lines); UD =
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ted lines). Bottom :UD = [−1−δ,−0.1−δ] and δ = 0, 0.1, 0.15, 0.18, 0.2, 0.25, 0.3, 0.4
(from light solid to dark long-dashed lines).
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diagonal interval but keeping a partial superposition with UOD. We take next UD =
[−1,−0.1 − δ2], thus making narrower the diagonal interval but progressively non-
superposed with UOD. The results are shown in Figure 5.12 (top) for n = 100. While
increasing δ1 alone has almost no effect on the probability of stability, increasing δ2
alone allows a quick stability recover at large C.

On the other hand, it is necessary to precise that the non-superposition criterion
is only necessary but evidently non sufficient to increase the stability at large C,
being related in a complicated way to the size of the intervals themselves. This can
be put in evidence by taking still n = 100, UOD = [−0.2, 0] and by simply shifting
UD towards the left as UD = [−1 − δ,−0.1 − δ] with 0 ≤ δ ≤ 0.4. For δ = 0.1
the intervals do not superpose anymore, but the stability recover is not yet present,
appearing for δ = 0.18 and becoming more and more relevant when the separation
between the intervals is increased (Figure 5.12 (bottom)).

When allowing some off-diagonal terms to be also positive, the increase of sta-
bility at large C is quickly lost, recovering the more trivial result of α monotonically
decreasing with C. This can be seen in Figure (5.13), in which α(C) is plotted for
n = 100, UD = [−1,−0.1] and UOD = [−0.09, b2] with b2 = 0, 0.02, 0.045, 0.07, 0.09,
corresponding to a probability of having a fraction between 0% and 50% of non-
competitive interactions. As conspicuous in Figure 5.13, already one tenth of posi-
tive off-diagonal terms is sufficient to destroy the stability recover at large C.

5.4 The influence of the matrix size

The problem can be made even more complicated by taking into account the in-
fluence of the matrix size n. As an example, we plot the stability curves α(C)
for UD = [−1,−0.1] and varying both n and UOD. We take UOD = [−0.09, 0] for
n = 50, 100, 200 and UOD = [−0.05, 0] for n = 200. When UOD = [−0.09, 0] one
can see that for an intermediate value of n (n = 100) the stability increases at large
C, while if n is too large (n = 200) α decreases monotonically with C (Figure 5.14,
light lines). Nevertheless, almost total stability everywhere can be recovered when
the off-diagonal interval is reduced to UOD = [−0.05, 0] (Figure 5.14, dark line).

To investigate the dependence of stability on both n and the size of the off-
diagonal interval, we calculate α(C) for UD = [−1,−0.1], taking different intervals
UOD = [b1, 0] (b1 < 0) and different values of n but keeping constant the product
|b1|

√
n =

√
2/3. The values of the dimension are n = 150, 200, 400, 600. The

stability curves plotted in Figure 5.15 do not superpose but are comparable, the
stability slightly increasing when n is made larger.

We deduce that a situation of overall stability, for UD and UOD non-overlapping,
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Figure 5.13: Probability of stability α(C) for n = 100, UD = [−1,−0.1] and six
off-diagonal intervals UOD = [−0.09, b2]. From the dark solid line to the light dash-
dotted line (top to bottom), b2 = 0, 0.01, 0.02, 0.045, 0.07, 0.09.

can be maintained and even strengthened for larger and larger systems if the coupling
coefficients are decreased as 1/

√
n. This result contrasts with the case of positive

off-diagonal terms, in which the stability curve α(C) does not vary when |b1|n is
kept constant.

It is interesting to remark that for symmetric off-diagonal intervals UOD = [−b, b]
(the diagonal elements being all equal) May [41] conjectured that the relevant pa-
rameter for stability was the product b

√
nC. In our case of non-symmetric intervals,

we recover an approximate stability parameter b
√
n, but the connectance cannot

enters in such a parameter with a monotonic function, which would prevent the
stability recover phenomenon at large C to appear.
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Figure 5.14: Probability of stability α(C) for UD = [−1,−0.1]. Light lines: UOD =
[−0.09, 0], n = 50, 100, 200 (respectively solid, dotted and dashed lines). Dark dash-
dotted line: UOD = [−0.05, 0], n = 200.

5.5 Conclusions

The stability of a linear dynamical system is influenced both on the number of the
degrees of freedom and on their mutual coupling (i.e. connectance), in a way which
is far from being understood. In our work we investigated the relationship stability-
versus-connectance by pointing out the role of the distribution of the diagonal and
off-diagonal terms in the matrix defining the system.

We first discussed the applicability of the well-know sufficient condition of stabil-
ity given by the quasi-diagonal dominance criterion, used in literature as a guide to
build stable connected systems. This condition is shown to be far from optimal even
when the system is only partially competitive (i.e. when some of the off-diagonal
coefficients of the matrix M are negative).
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Figure 5.15: Probability of stability α(C) for UD = [−1,−0.1], UOD = [b1, 0] and
dimensions n such that |b1|
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n =

√
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line: n = 200, b1 ≈ 0.057; dash-dotted line: n = 400, b1 ≈ 0.041; solid line: n = 600,
b1 ≈ 0.033.

We then looked for different criteria of stability, by analysing in particular the
possibility of restabilization at moderate or high connectance. We started our anal-
ysis with a specific fully connected system in which the matrix M is characterized
by only two values (one for the diagonal terms and one for the off-diagonal ones), for
which there exists an analytical necessary and sufficient condition of stability. For
competitive systems, this condition is independent of the dimension of the matrix
and less restrictive than the quasi-diagonal dominance theorem.

We then investigated numerically the effect of the connectance on stability in
the more general case in which the elements of the matrix M are drawn from some
intervals. We interpreted some results by studying the distribution of the largest
eigenvalue of the matrix as a function of the overlapping among the intervals from
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which diagonal and off-diagonal terms are drawn. We obtained this way a new op-
erational criterion to increase the probability of stability at high connectance, which
can be resumed this way: stability can be increased by choosing non-overlapping
diagonal and off-diagonal intervals UD, UOD, such that UD be wide enough and
UOD be narrow enough, both containing only negative terms.

Concerning the size of the system we showed that, for the competitive case, the
stability rescales approximately with the square root of the dimension, in agreement
with a conjecture concerning symmetric off-diagonal intervals [41].

87



Chapter 6

The nonlinear case

While in Chapter 5 we presented some results on the influence of the connectance
on the linear stability of dynamical systems, we face here the problem of how the
connectance affects the global nonlinear dynamics. We restrict to the problem of the
stability of the actions in Hamiltonian systems, the theory of which has been resumed
in Chapter 3. We analyse in particular how the emergency of chaos is related to the
variation of the connectance in some nonlinear models. To this goal, we first discuss
the general properties of Hamiltonian chaos and some methods used to detect it,
concentrating on the notion of Lyapunov exponents and on some indicators giving
an estimate of them. In the second part of this Chapter we apply these methods
to two different many-dimensional nonlinear systems. We will see that the degree
of connectance has a deep impact on the global chaoticity, even if every model has
specific properties and the results are less generic than in the linear case. This
results are resumed in a paper which is currently in preparation [37].

6.1 The detection of chaos

According to the classical results of the KAM and the Nekhoroshev theorems pre-
sented in Chapter 3, the structure of the phase space of a non-integrable dynamical
system is characterized by orbits both lying on invariant tori and “chaotically” wan-
dering among them. In this sense, one considers an orbit (q(t), p(t)) as chaotic when
in a 2n-dimensional phase space it does not exist a n-dimensional surface on which
this orbit is contained. Two examples of chaotic trajectories are represented on Fig-
ure 6.1 for the standard map (3.29). In (a) for ε = 0.6 we displayed a chaotic orbit
generated around the hyperbolic point (0, 0), the evolution of which is limited by
the presence of many KAM tori, while in (b) for ε = 1.2 a much more “wandering”
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(a) (b)

Figure 6.1: Chaotic orbits generated around the hyperbolic point (0, 0) for the stan-
dard map. In (a) ε = 0.6, while in (b) ε = 1.2.

chaotic trajectory is shown. In both cases one has the visual impression that it does
not exist a regular curve p = p(q) over which these orbits can lie, even if this feeling
is much more evident in the second case.

In fact, there exist many definitions of chaos, and the one we presented is just
one among others. Moreover, it does not exist an operative procedure to establish
whether a given orbit lies or not on a invariant surface. An iterative procedure has
been developed by Milani and Knezevic [44], but its convergence is not guarantee.

A more operative criterion to decide whether an orbit is chaotic or not resides
on the notion of exponential separation of close trajectories. One can say that an
orbit is chaotic when, taking an infinitely close one, the two trajectories separate
exponentially fast. This property, which is displayed by numerical simulations, de-
rives from the hyperbolic character of the dynamics close to resonant regions. For
more details, see for example [54]. On an invariant torus, on which the Hamiltonian
is locally integrable, two nearby orbits separate instead at a linear rate.

The idea of exponential divergence between close orbits can be mathematically
formalized with the notion of Lyapunov characteristic exponents (LCEs), the theory
of which is resumed in the next Section. Positive Lyapunov exponents correspond
to exponential separation. In compact manifolds the Lyapunov exponents always
exist and can be iteratively calculated, so we can rely on them to give an operative
definition of chaos. Moreover, an orbit which does not lie on an invariant surface
has at least a positive Lyapunov exponent. The general theory of LCEs as well as
the method to compute them was provided by Oseledec [48] in 1968.
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6.1.1 Lyapunov exponents

Let us consider a compact Riemannian manifold W of dimension m, a probabil-
ity measure µ on W and a measure–preserving flow Φt. Φt : W → W is then a
one parameter group of diffeomorphism with composition law Φt+t′ = Φt ◦ Φt′ and
µ(Φ−t(A)) = µ(A) for any measurable set A ⊂W . We consider a regular curve

y : W →W

s 7→ y(s)

such that y(0) = x and y(s) = x̃ for s fixed. If s is small one can consider x and x̃
as two near orbits and introduce the tangent vector to the curve y

w =
∂y

∂s
|s=0 ∈ TxW.

The Riemannian metric induces a distance on W that we indicate with d(·, ·). We
calculate then the ratio among the initial distance between the two orbits and the
distance after a time t on the action of the flow:

Ψ(x, y(s)) = d(Φt(x̃),Φt(x))/d(x̃, x),

where Ψ is a function Ψ : Wm × IR2 → IR. Hence we have:

d(x̃, x) = s||w||+ o(s),

|| || being the norm on TxW induced by the metric on W . In the same way we have

d(Φt(x̃),Φt(x)) = s||DΦt
xw||+ o(s),

where DΦt
x is the linear tangent mapping which maps TxW into TΦt(x)W .

If the flow represents the family of the integral curves of a dynamical system
in IRm, i.e. ẋ = F (x), the evolution of the tangent vector can be calculated by
linearizing the equations of motion:

dw
dt

=
(∂F
∂x

)
w. (6.1)

The limit of the distances ratio Ψ(x, x̃, s, t) when s→ 0 is given by ||DΦt
xw||

||w|| and
we define the Lyapunov characteristic exponent on the flow Φt

x relative to x and w
as:

lim
t→∞

1
t

log
||DΦt

xw||
||w|| = χ(x,w). (6.2)
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This quantity measures then the time ratio of the divergence between infinitely
close orbits over an infinite time. It can be shown that the limit exists and is finite.
Furthermore, there is a m-dimensional basis {ei} of TxW such that for any w,
χ(x,w) takes one of the m values χ(x, ei). These are independent of the choice of
the metric and are called the Lyapunov characteristic exponents (LCEs) relative to
x for the flow Ψ.

We say that two near orbits diverge exponentially if the largest LCE is positive,
and that two near orbits diverge linearly if the largest LCE is zero.

In fact, for any choice of the vector w, apart for a set of zero measure, χ(x,w)
coincides with the largest LCE [48].

In the following we concentrate on the practical ways of measuring χ(x,w) (LCE
hereafter), which, when positive, gives a measure of the “strength of the chaos” for
a given orbit. Apart from very special cases (i.e. hyperbolic integrable orbits), the
simple fact of having a positive value for χ is sufficient for characterizing an orbit
as chaotic.

6.1.2 Numerical computation of the LCE

To calculate the LCE, in principle one has to integrate the equation of motion and
of the tangent vector, for a sufficiently long time to be sure that the convergence
in the limit (6.2) has been reached. Naive integration leads after a sufficiently long
time to a computer overflow, as the norm of w increases exponentially with time.
The difficulty is overcome making use of the linearity of the tangent map.

Taken an initial vector w of norm 1, one considers the time-advancing procedure
at arbitrary times jτ (i = 1, 2, . . .). Then, using the property of the composite map:
DΦt+t′

x = DΦt′
Φt(x) ◦DΦt

x we have:

||DΦnτw|| = ||DΦτ . . . DΦτw||

Now, if at each step j we consider the amplification factor αj of w, we have

||DΦnτw|| = α1 . . . αn||α−1
n DΦτ . . . α−1

1 DΦτw|| (6.3)

i.e. on the r.h.s. of equation (6.3) appear the renormalized vectors at each step.
Because each renormalized vector has norm 1, one has simply ||DΦnτw|| = α1 . . . αn.

In practice, one renormalizes the evolved vectors at arbitrary times jτ and after
n steps he has for the truncated value of χ at time nτ

χ̃(x, n,w) ≡ 1
nτ

n∑

j=1

log αj (6.4)
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6.1. The detection of chaos

where αj is the renormalizing factor at time jτ . For n→∞ this procedure converges
to the LCE.

Actually the integration of the equation (6.2) is not really necessary if one wants
to calculate only the largest Lyapunov exponent. As shown on Figure 6.2, let us
consider two orbits starting at P0 and P ′0 and denote by d(t) the distance between
them at time t. After a time τ , let bring back the second orbit at the initial distance
d(0) from the first one and iterate the process n times, as displayed on Figure 6.2.
It is demonstrated in [5] that the quantity

γ(P0, d(0), τ, n) ≡ 1
nτ

n∑

j=1

log
d(jτ)
d(0)

(6.5)

converges to the LCE in P0 as n→∞ and the distance d(0) tend to 0.
In the case of a mapping in IRm defined by M : ~Xn+1 = M( ~Xn) the defini-

tion and the properties of the Lyapunov exponents are the same. We consider the
application M , and the corresponding tangent mapping given by

{
~Xn+1 = M ~Xn

~Vn+1 = (∂M
∂ ~X

) ~Xn

~Vn
(6.6)

We iterate simultaneously these two mappings, taking as initial conditions a point
~X0 and a vector ~V0 of norm 1. The vector is renormalized every h integration steps.
According to equation (6.4) the LCE of an initial point ~X0 is given by

χ( ~X0) = lim
n→∞

1
nh

n∑

j=1

logαj = lim
n→∞

1
n

n/h∑

j=1

logαj (6.7)

where αj is again the renormalization coefficient.
In practice, the computation is done on a finite number of iterations and we retain

the truncated values of the LCE for a finite time. This value is called Lyapunov
Characteristic Indicator (LCI) and we indicate it hereafter by χ̃(n), not mentioning
the initial point x or the initial vector w. For the case of a mapping, we have then
for the LCI χ̃(n) = 1

nh

∑n
j=1 logαj .

To investigate the convergence of the sum χ̃ to its limit for n → ∞, we study
its behaviour as a function of the number of interactions for 3 different orbits in the
case of the standard map, which is rewritten here for convenience:

{
pi+1 = pi + ε sin(pi + qi) (mod2π)
qi+1 = pi + qi (mod2π)

(6.8)
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x(t)

x(2t)

x(3t)
d(t)

d(2t) d(3t)

x(0)=P0d(0)

x’(0)=P0’

x’(t)

x’(2t)
x’(3t)

Figure 6.2: Renormalization procedure for the computation of the LCE using two
close orbits. The second orbit is periodically brought back at the initial distance
and re-integrated starting from its new location.

The orbits are calculated for ε = 0.6 and are displayed on Figure 6.3. The
corresponding time evolutions of the LCI are shown on Figure 6.4. We consider first
an orbit lying on a torus, with initial condition ~X0 ≡ (q0, p0) = (0, 1), indicated
as (a) on Figure 6.3. We note that the LCI tends to 0 in agreement with the
fact that χ = 0 for regular orbits (dotted line on Figure 6.4). Also in the case of
~X0 = (0.5, 0) the LCI goes to 0 (dashed line on Figure 6.4), but now the orbit is
resonant, i.e. lies on an island (indicated as (b) on Figure 6.3). Moreover, in both
cases χ̃ ∼ log(n)/n in agreement with a linear rate of separation. The last initial
condition ~X0 = (10−5, 0) corresponds to a chaotic orbit (trajectory (c) on Figure
6.3). In this case the LCI is positive and converges to a constant value in agreement
with the fact that for chaotic orbits the rate of separation is exponential and χ > 0
(Figure 6.4, solid line).
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6.1. The detection of chaos

Figure 6.3: 3 different kinds of orbits of the standard map for ε = 0.6. In (a) the
initial condition is ~X0 = (0, 1), in (b) ~X0 = (0.5, 0), in (c) ~X0 = (10−5, 0).
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Figure 6.4: LCI for the three orbits displayed on Figure 6.3.
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6.2. The case of weak chaos: some indicators

In this case it is not a problem to reveal the chaotic character of an orbit, since
the LCI quickly stops to decrease and reaches a positive value. A similar case is
called strong chaos.

A real difficulty to discriminate between a regular and a chaotic orbit arises
for example for the two initial conditions ~X0 = (0.2, 0) and ~X0 = (10−10, 0) when
ε = 0.003. The former orbit is regular and is shown on Figure 6.5. The latter
looks very much to the former, as seen on Figure 6.6a, but it originates so close
to the hyperbolic point (0, 0) to have positive Lyapunov exponent even if ε is very
small. In fact, its chaotic character is evident when zooming around the hyperbolic
point, as seen on Figure 6.6b. The behaviour of the LCI is plotted on Figure 6.7,
where we can see that 106 iterations are needed to reveal the chaotic character of
the second orbit. In this case one talks of weak chaos. For weak chaotic orbits, it
is clear that an arbitrary truncation of the computation can give misleading results.
When the attention is focused on a single orbit, nothing prevents to integrate for
a sufficiently long time to reach the convergence. The problem arises when we
are interested in the analysis of a whole region of the phase space, for which it is
practically impossible to integrate for too long times. Therefore, although the theory
of LCI has a solid mathematical background, in order to overcome the computational
difficulties which can arise in particular for the case of weak chaos, other indicators
have been developed.

6.2 The case of weak chaos: some indicators

We summarize in this Section some indicators used for a fine identification of large
sets of orbits, and we give some examples of their application on the two-dimensional
standard map.

6.2.1 Frequency map analysis

Introduced by Laskar in 1988 [34] to understand the long-time evolution of the
Solar System, this method was then successfully used in two-dimensional mappings
to determine the critical value for which the last invariant torus disappears [35], as
well as for the study of global dynamics and diffusion in multi-dimensional systems
[36]. Moreover, it has been used by Celletti, Lega and Froeschlé to explore the
structure around an invariant KAM torus [7],[38].

The basic idea of the frequency map analysis is to obtain directly, in a numerical
manner, the quasi-periodic approximation of the solution of an n-dimensional quasi-
integrable Hamiltonian system (and therefore the set of associated frequencies ωi,
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6.2. The case of weak chaos: some indicators

Figure 6.5: Regular orbit of the standard map for ε = 0.003, with initial condition
~X0 = (0.2, 0).

(a) (b)

Figure 6.6: (a): Weakly chaotic orbit of the standard map for ε = 0.003, with initial
condition ~X0 = (10−10, 0). (b): zoom around the hyperbolic point (0, 0).
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Figure 6.7: LCI for the two orbits displayed on Figure 6.5.

i = 1, ..n) without searching for an explicit change of coordinates to action-angle
variables.

Different methods have been developed in order to compute the frequencies as-
sociated to the quasi-periodic motion [34],[35]. Let us suppose to have computed
the quasi-periodic approximation for a given non-degenerated Hamiltonian system
with n degrees of freedom. Following Laskar, the frequency map F is defined as
the application which associates to a vector of initial action-like variables pj(0),
j = 1, .., n− 1, the frequency vector ωj , j = 1, .., n as follows:

F : (p(0)1, p(0)2, ...p(0)n−1) → (
ω1

ωn
,
ω2

ωn
, ...,

ωn−1

ωn
). (6.9)

The angles are fixed to arbitrary values qj(0) = qj0 and the last action pn is deter-
mined by the condition: H(p, q) = const.

One important remark is that, although frequencies are defined only on invariant
tori, the frequency analysis algorithm computes numerically the frequency vector for
any initial condition. On the KAM tori, this frequency vector will be a very accurate
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Figure 6.8: Standard map for ε = 0.8. Orbits on the phase plane and value of the
frequency map on the cross-section p = 0 (curtesy of Froeschlé and Lega [19]).

approximation of the actual frequencies, while in the weakly chaotic regions, it will
provide a natural interpolation between these fixed frequencies.

As an example, we take the standard map and we consider a cross-section of the
phase plane at p = 0. The frequency map associates to each orbit its corresponding
frequency ω = ω1 (ω2 = 1).

We can clearly see in Figure 6.8 that noisy variations of the frequency correspond
to chaotic regions, while the set of rotational tori are revealed by a monotonic
variation of ω and the crossing of islands is identified by a constant value of the
frequency.

The algorithm for the calculation of the frequency map developed by Laskar
relies in a sophisticated use of the Fourier transform. The details can be found in
[35].

As far as two-dimensional mappings are concerned, an easier method of compu-
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6.2. The case of weak chaos: some indicators

tation was developed by Hénon [27] and then used and extended by Celletti et al.
in 1996. [8].

6.2.2 The Fast Lyapunov indicator (FLI)

When computing the LCI the attention is focused on the length of time necessary to
get a reliable value of its limit, but very little importance has been given to the first
part of the computation. Actually, this part was considered as a kind of transitory
regime depending, among other factors, on the choice of an initial vector of the
tangent manifold.

Already in 1997, Froeschlé et al. [18] remarked that the intermediate value of
the LCI, taken at equal times for chaotic, even weakly chaotic, and ordered motion,
allows to distinguish between them. In fact, we noticed that the LCI tends to 0 for
regular orbits and to a non-zero constant for chaotic orbits, but in some cases one
must wait for long times to discriminate clearly among the two regimes. If one takes
instead the LCI multiplied by the time, he visually can separate more easily the
two cases, but the presence of oscillations still makes difficult to distinguish the two
regimes. If one now takes not only the LCI multiplied by the time, but its largest
value over a given time interval, he can eliminate the time oscillations. From this
observation, Froeschlé et al [39] defined a new indicator, called fast Lyapunov indi-
cator (FLI), which consists in the largest value, over a time T , of the LCI multiplied
by the time at which the LCI is calculated.

For a given mapping M : IRm → IRm, along with its tangent map:
{
~xi+1 = M~xi

~vi+1 = ∂M
∂~x (~xi)~vi .

(6.10)

the FLI after n iterations is defined, for an initial tangent vector of norm 1, as

ψ(~x0, ~v0, n) = sup
0<i≤n

log ||~vi||. (6.11)

It turns out that the fact of multiplying the LCI by the time elapsed, and taking
the largest value over this time, gives to this indicator a surprisingly good sensitivity.
A main characteristic of the FLI is that it allows not only to distinguish among strong
and weak chaos using shorter integration times, but also to distinguish between non-
chaotic orbits of different origin, like resonant and non-resonant motion [26]. In both
cases the LCI tends to zero when t goes to infinity, while the FLI grows linearly with
time, but over a finite time it reaches a different value on a torus than on an island.
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6.2. The case of weak chaos: some indicators

The linear growth of the FLI with time can be easily seen for the case of a torus
in a continuous system. Take the quasi-integrable Hamiltonian

H = H0(p) + εH1(p,q), (6.12)

where p and q are canonically conjugate variables and ε is a small parameter. The
equations (6.1) for the tangent vector (Vp,Vq) now read





dVpj

dt
= −ε

n∑

i=1

∂2H1

∂qj∂pi
Vpi − ε

n∑

i=1

∂2H1

∂qi∂qj
Vqi

dVqj

dt
=

n∑

i=1

∂2H0

∂pi∂pj
Vpi + ε

n∑

i=1

∂2H1

∂pi∂pj
Vpi + ε

n∑

i=1

∂2H1

∂pj∂qi
Vqi

These are immediately integrated in the case ε = 0: for any initial tangent vector
(Vp(0),Vq(0)) the solution is





Vp(t) = Vp(0)

Vq(t) = Vq(0) +
∂2H0

∂2p
(p(0),Vp(0))t = Vq(0) +

∂ω

∂p
(p(0),Vp(0))t

(6.13)

In the integrable case, the norm of the tangent vector grows at most linearly with
the time and ||V(t)|| ∼ ∂ω

∂p t, so the FLI behaves like log |∂ω/∂p| + log t . For most
Hamiltonians (at most quadratic in p) ∂ω/∂p is constant over the phase space, so
all the tori have the same value for the FLI.

If one considers the perturbation, he can demonstrate [26] that for tori

||V(t)|| ∼ ∂ω

∂p
t+O(εαt)

for some α. For resonant motion instead the norm of the tangent vector is still linear
with time, but with a different coefficient, which turns out to be lower than for tori
[26].

If one looks at the frequency map displayed on Figure 6.8, he can see that even
in the perturbed case the detected frequency varies linearly with p on tori and is
constant inside islands. ∂ω

∂p is a non-zero constant on tori and zero inside islands.
With this simple observation one can understand why at the lowest order, for which
||V(t)|| ∼ ∂ω

∂p t, the growing factor of the tangent vector is lower on islands than on
tori.

We now test the sensitivity of the FLI on the two-dimensional standard map
(6.8).
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Figure 6.9 shows the variation of the FLI with the time for three different kinds
of orbits plotted on Figure 6.3. The upper curve, with initial conditions (10−5, 0)
in a chaotic zone, shows an exponential variation of the FLI with time. The second
curve corresponds to a regular invariant torus of initial conditions (0.5, 0) and the
lowest one to a resonant curve of initial conditions (0, 1). We can observe a little
difference between the regular and the resonant curve. The FLI grows linearly with
log t for both kinds of regular orbits but with a different constant which turns out
to be lower for resonant regular motion than for tori. Moreover, such a constant is
the same for all tori, while changes smoothly for resonant regular orbits.

Figure 6.10 shows instead the variation of the FLI with the time for the two
orbits plotted on Figure 6.5, for which the LCI has to be evaluated over a very long
time to discriminate among the two orbits. The FLI instead allows to distinguish
much more easily among a resonant orbit (lower curve, with initial conditions (0.2, 0)
and a weakly chaotic one (upper curve, with initial conditions (10−10, 0).

If we want to analyse many orbits, a good tool is the computation of the FLI-
map, i.e. a mapping which associates to each initial condition the corresponding
value of the FLI, for a fixed time T . On Figure 6.11 we have computed the FLI for
a set of 1000 initial conditions of the standard map , regularly spaced on the q-axis
in the interval [0, π]. For each orbit p(0) = 0, and T = 1000. Many orbits appear to
have a value of FLI very close to log T = 3. Actually, they all appear to be regular
invariant tori. Values slightly greater than logT indicate either very thin chaotic
layers or invariant tori close to very thin chaotic zones. The orbits having an FLI
value lower than log T correspond to chains of islands.

6.2.3 The FLI charts: transition from the Nekhoroshev to the
Chirikov regime

We saw that the Nekhoroshev theorem provides a “practical” result for the stability
of Hamiltonian dynamical systems, and under a certain point of view it can be more
useful that the KAM theorem. The Nekhoroshev theorem gives estimates of stability
over an exponential long time provided that the perturbation is small enough. This
result is valid for any trajectory: resonant, chaotic or non-resonant. Actually, the
Nekhoroshev mechanism is associated with the existence of a large domain of the
phase space filled by invariant tori. Of course, for conservative systems with two
degrees of freedom, or for a two-dimensional area-preserving mapping, stability is
ensured as far as the last torus remains, but this result is no more true when the
dimension of the system increases and in this case we rely on the Nekhoroshev
theorem for stability. The transition from the Nekhoroshev to the Chirikov regime is
a smooth process involving the progressive superposition of resonances. The system
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Figure 6.9: Variation of the FLI with time for three orbits of the standard map with
ε = 0.6. Upper curve: chaotic orbit with initial conditions ~X0 = (10−5, 0). Middle
curve: non-resonant orbit with ~X0 = (0.5, 0). Lowest curve: resonant orbit with
~X0 = (0, 1).
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Figure 6.10: Variation of the FLI with time for two orbits of the standard map with
ε = 0.003. Upper curve: weakly chaotic orbit with initial conditions ~X0 = (10−10, 0).
Lowest curve: resonant orbit with ~X0 = (0.2, 0).
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Figure 6.11: Value of the FLI at T = 1000 as a function of the initial angle on the
line p(0) = 0 for the standard map with ε = 0.3.

switches from a regime in which the diffusion of the actions among the regular region
is slow, to a regime of fast diffusion in which the phase space is almost completely
chaotic.

For systems with a low number of degrees of freedom, this transition can be
represented and studied by means of FLI-charts. In the m-dimensional action space
spanned by (p1, . . . , pn) one takes m − 2 actions constant and calculates the FLI
on the plan mapped by the remaining two, let’s say p1 and p2. This map ψ(p1, p2)
gives a very informative description of the action space, allowing to identify regular,
resonant and chaotic zones and to see the transition among the mostly regular and
the chaotic regimes.

We give here an example of this technique, applied to a four-dimensional sym-
plectic mapping given by
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6.2. The case of weak chaos: some indicators





P1 = q1 + µ1 sin(p1 + q1)+
ε sin(p1 + q1 + p2 + q2)+
ε sin(p1 + q1 − p2 − q2) + (mod 2π)

Q1 = p1 + q1
P2 = q2 + µ2 sin(p2 + q2)+

ε sin(p1 + q1 + p2 + q2)−
ε sin(p1 + q1 − p2 − q2) + (mod 2π)

Q2 = p2 + q2

(6.14)

which is built with two coupled standard maps. We keep fixed the single-mappings
perturbation parameters µ1 = 0.4 and µ2 = 0.3, and we progressively increase the
chaoticity by increasing the coupling parameter ε. The FLI-charts on the plane
(p1, p2) are displayed on Figure 6.12 for ε = 0.01, 0.02, 0.03, 0.05, where log(ψ) after
n = 1000 iterations is displayed with color codes. The FLI for regular orbits behaves
like log(n), for resonant orbits it is smaller and for the chaotic ones it is much larger
than this value, being exponential with n. The FLI range is restricted to [2, 5].
The value 5 is assigned to all the orbits for which the FLI is larger 5. The value
log(1000) = 3 indicates then tori, a smaller one resonant orbits, while all chaotic
orbits correspond to values larger than 3, and mainly close to 5.

Panel (a) on Figure 6.12 represents a situation in which the action space is mainly
filled by tori. When increasing ε, the chaotic zones become larger and larger at the
crossing of resonant lines. Further resonant lines appear and the volume occupied
by the tori shrinks to 0 (Figure 6.12d). The system is in the Nekoroshev regime
when a web of resonances is embedded in a large volume of tori, and the transition
to the Chirikov one happens when resonance crossings overlap. This evolution is
evident from panel (b) to panel (d).

When the number of degrees of freedom is large, the FLI-charts give just a qual-
itative picture of the geometry in the action space, but they are not representative
of the full complexity of the system. In this case one must discard the precise geo-
metrical representation and can give just a statistical description, using histograms
for the distribution of the FLI.
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6.2. The case of weak chaos: some indicators

Figure 6.12: Graphical representation of the values of the FLI in the action plane
(p1, p2) for the four-dimensional mapping (6.14) when µ1 = 0.4, µ2 = 0.3 and
n = 1000 iterations. The values of ε are 0.01 (a), 0.02 (b), 0.03 (c), 0.05 (c).
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6.3. Connectance and nonlinear dynamics

6.3 Connectance and nonlinear dynamics

We want now to investigate the influence of the connectance on the stability of
coupled nonlinear systems, using the tools discussed in the first part of this Chapter.
As introduced in Chapter 4, the role of the connectance in some nonlinear models
was investigated first by Froeschlé in 1978. His attempt has remained almost isolate
until now. The original question can be resumed as follows: taken n dynamical
systems, integrable or quasi-integrable, does (and how fast) the fraction of chaotic
orbits increase with their degree of coupling? We analyse this issue on two different
nonlinear systems, the first one deriving from the original Froeschlé model.

6.4 The Froeschlé model revisited

We consider here the model already used by Froeschlé in 1978, but with some dif-
ferences. Starting with the Hamiltonian of the pendulum for the jth degrees of
freedom

Hj =
p2

j

2
+ εj cos qj (6.15)

one can introduce couplings among the angles and consider the n-degrees of freedom
Hamiltonian

H =
n∑

j=1

p2
j

2
+

n∑

j=1

εj cos
( n∑

k=1

αjkqk
)

(6.16)

for which the equations of motion are




∂pi

∂t
=

n∑

j=1

εjαji sin
( n∑

k=1

αjkqk
)

∂qi
∂t

= pi

(6.17)

We discretize in time with the leap-frog integrator. Taking a time step ∆t, one
approximates the equations (6.17) as follows:




pt+∆t

i = pt
i + ∆t

n∑

j=1

εjαji sin
( n∑

k=1

αjkq
t+∆t
k

)

qt+∆t
i = qt

i + ∆t pt
i

(6.18)

With the change of variables p̃t
i = ∆t pt

i and defining ε̃ = ∆t2ε one obtains then, by
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suppression of the tildes and using capital letters for the time-advanced variables:



Pi = pi +

n∑

j=1

εjαji sin
[ n∑

k=1

αjk(qk + pk)
]

Qi = qi + pi

(6.19)

This is a symplectic mapping which can be taken as a model to study the behaviour
of a n-degrees of freedom interacting system. The interactions are switched on or
off by setting to 0 or 1 the elements αij . When the matrix A = [αij ] is diagonal,
the mapping (6.19) reduces to n uncoupled standard maps, which are immediately
integrated in the limit εj → 0. We recall that for ε 6= 0 the uncoupled mappings are
non-integrable, but the chaotic region is still small for ε as large as 1/4 (see Section
3.2). The αij are taken symmetric. This model is the same as the one used by
Froeschlé, apart for a further nonlinear self-coupling term which makes his model
non-integrable already for ε = 0. To switch on the couplings, Froeschlé took

{
αij = 1 for j − i < Nc

αij = 0 for j − i ≥ Nc
(6.20)

with j ≥ i and defined Nc as the connectance number.
In our work we progressively increase the couplings by filling the matrix A both

in ordered and non-ordered way, and define the connectance as the fraction of non-
zero elements αij outside of the main diagonal. This definition of connectance is
exactly the same as in the linear case (Chapter 5). In the ordered case, we proceed
as Froeschlé by progressively filling the upper and lower diagonals. For a given
Nc > 1, the number of non-zero off-diagonal terms is given by 2

∑Nc
i=2(n− i+ 1), so

the connectance C is related to Nc by

C =
(Nc − 1)(2n−Nc)

n(n− 1)
.

In the non-ordered case, the position of the non-zero elements outside the main
diagonal are taken at random, still enforcing the symmetry αij = αji.

Taking now a set of initial conditions, we iterate the mapping (6.19) for given
values of C and εj . In particular, all the εj will be equal to the same value ε. For
every orbit we detect whether it is chaotic or not by calculating its FLI (Section
6.1) and calculate the probability of regularity ρ, defined as the percentage of regular
orbits (lying on both tori and island). In all numerical experiments, we take 500
initial conditions chosen at random and we iterate the mapping 10000 times.
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6.4.1 Numerical experiments: the regularity recover

As a first experiment, we calculate the probability of regularity for the ordered
connectance with n = 10, 20, 30, 50, 100 and ε = 10−3. To compare our definition
of connectance to Froeschlé connectance number, we plot both ρ versus Nc (Figure
6.13) and ρ versus C (Figure 6.14). It is evident that when comparing systems with
different number of degrees of freedom, it is better to measure the connectance with
a quantity whose range is independent of n, then we discard Nc and keep using C.

The perturbation strength ε is chosen in such a way that for C = 0 the uncoupled
mappings are almost completely integrable. When C increases, the measure of the
phase space filled by chaotic orbits increases quickly, the faster the larger is n. A
surprising fact is that if n is sufficiently small the probability of regularity reaches
a minimum for a given C and then increases, reaching values close to 1 when the
coupling matrix is completely full.

We fix now the dimension n = 10 and vary the perturbative parameter ε. The
corresponding curves ρ(C) are plotted on Figure 6.15 for 4 values of ε between 10−3

and 10−1. Even in this case, ρ increases at high connectance for ε sufficiently small.
This phenomenon is analogous to the stability recover seen in the linear case

(Chapter 5). To investigate it, we study the behaviour of the coupled mapping
(6.19) for C = 1, i.e when αij = 1∀ i, j. In this case the mapping reads




Pi = pi +

n∑

j=1

εj sin
[ n∑

k=1

(qk + pk)
]

Qi = qi + pi .

(6.21)

Introducing the summed variables




z =
n∑

i=1

pi

w =
n∑

i=1

qi

(6.22)

the equations (6.21) become



Pi = pi +

n∑

j=1

[εj sin(z + w)] = pi + εn sin(z + w)

Qi = qi + pi

(6.23)

where the last equality in the upper equation (6.23) holds only when εi = ε ∀ i,
which is the case we considered. Now, summing up over the index i one gets for the
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Figure 6.13: Probability of regularity ρ as a function of Nc for n = 10, 20, 30, 50, 100
and ε = 10−3 with ordered connectance.
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Figure 6.14: Probability of regularity ρ as a function of C for n = 10, 20, 30, 50, 100
and ε = 10−3 with ordered connectance.
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Figure 6.15: Probability of regularity ρ as a function of C for n = 10 and ε =
10−3, 5 · 10−3, 10−2, 10−1 with ordered connectance.

evolution of the summed variables
{
Z = z + εn2 sin(z + w)
W = z + w

(6.24)

The dynamics of the ith variable is then given by the four-dimensional mapping




Pi = pi + εn sin(z + w)
Qi = qi + pi

Z = z + εn2 sin(z + w)
W = z + w

(6.25)

so each couple (pi, qi) has the same dynamical evolution, slaved to the dynamics of
the summed variables (z, w) and integrable once the evolution of z and w is known.
Then the fully coupled system reduces in fact to a 4-dimensional mapping, of which
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Figure 6.16: Probability of regularity ρ as a function of C for εn2 = 0.2 = constant
and n = 10, 20, 30, 50, 100 with ordered connectance.

two equations are integrable. The parameter controlling the fraction of chaotic orbits
is the one driving the non-integrable part of the system, i.e. εn2. We display on
Figure 6.16 the curves ρ(C) obtained when both n and ε are varied by keeping the
product εn2 constant. We take n = 10, 20, 30, 50, 100 and εn2 = 0.2. For this value
of the perturbation parameter the system (z, w) is in fact almost integrable, then for
C = 1 the probability ρ is practically equal to 1. εn2 does not prescribe completely
the dynamics when C 6= 1, but it is still a relevant control parameter.

We remark that the value of C for which the probability of regularity ρ(C) is
minimal is approximately the same when n is varied, and it is independent of ε,
when sufficiently small. To put in evidence this property we recalculate ρ(C) for
ε = 10−4, a value for which a minimum can be individuated even for n quite large
(n = 50 in this case). The corresponding curves for n = 10, 20, 30, 50 are displayed
on Figure 6.17.
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6.4. The Froeschlé model revisited

0.0 0.2 0.4 0.6 0.8 1.0
C

0.0

0.2

0.4

0.6

0.8

1.0

ρ

n=10
n=20
n=30
n=50

Figure 6.17: Probability of regularity ρ as a function of C for ε = 10−4 and n =
10, 20, 30, 50 with ordered connectance. The position of the minimum is almost
constant.

6.4.2 Connectance and number of direct couplings. Reduction of
the number of degrees of freedom

To comment the previous results, we must point out some special features of the
model. First of all, the connectance previously defined does not correspond to the
fraction of direct couplings in the equations of motion, as it was in the linear case.
This can be seen by examining the equations for the momenta, which contain the
coupling terms:

Pi = pi +
n∑

j=1

εjαji sin
[ n∑

k=1

αjk(qk + pk)
]
. (6.26)

It is evident that the ith variable is coupled with some others if αji 6= 0 for some
j. In this case it is coupled with all the variables k for which αjk 6= 0. To list
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immediately all the variables coupled with the ith one, the following procedure can
be used: take the matrix A = [αij ] (which is symmetric) and in the line i look for
all the columns j such that αij 6= 0. In any such column j, look then for all αkj 6= 0.
Then the variable i is coupled with all these variables k. We point out that this
method is valid both for ordered and non-ordered connectance, because it concerns
the structure of the equations and not the way of filling the matrix A. Take for
example the following matrix (6.27), in which we indicated only the non-zero αij

(they are of course present on the main diagonal). We can see that the variable i
is coupled with the variables 1(from column 1), 2, 4, n − 1 (from column 2), 2, 3,
4, n− 2 (from column 4), 1, 2, 4, n− 1, n (from column i), 2, n− 1 (from column
n− 1), and n (from column n).

A =




α11 0 0 0 0 α1i 0 0 α2,n−1 0
0 α22 0 α24 0 α2i 0 0 0 0
0 0 α33 α34 0 0 0 0 0 0
0 α42 α43 α44 0 α4i 0 α4,n−2 0 0
0 0 0 0 α55 0 0 0 0 0
αi1 αi2 0 αi4 0 αii 0 0 αi,n−1 αin

0 0 0 0 0 0 αn−3,n−3 0 0 0
0 0 0 αn−2,4 0 0 0 αn−2,n−2 0 0
0 αn−1,2 0 0 0 αn−1,i 0 0 αn−1,n−1 0
0 0 0 0 0 αni 0 0 0 αnn




(6.27)
It is clear that multiple couplings can exist, i.e. in the equation for the variable i

the same variable k can appear many times. The fraction of direct couplings in the
equations of motion (indicated hereafter as Cd) can then be counted once the matrix
A is assigned. It is given by the number of direct couplings (multiple couplings being
counted once) divided by the number of off-diagonal matrix element n(n−1), which
is equal in turn to the number of “connected” couples of variables in the equations
divided by the number of total couples, i.e. n(n− 1)/2.

When filling the matrix the ordered way, already Froeschlé pointed out that
the system becomes fully coupled (i.e in the equation for every variable i all the
others appear) when Nc equals a critical value N crit

c = 1
2(n + 2) if n is even and

N crit
c = 1

2(n+ 1) if n is odd. This corresponds to a value of C given by

Ccrit =
3n− 2

4(n− 1)
=

3
4

(
1 +

1
3n

+O
( 1
n2

))
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for n even and
Ccrit =

3n− 1
4n

=
3
4

(
1− 1

n

)

for n odd. For this way of filling and for Nc ≤ N crit
c , Cd is in fact related to Nc by

the relationship
Cd = 2(Nc − 1)(2n− 2Nc + 1). (6.28)

For n = 6, the critical configuration is the following one:

A =




1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1




In fact, a sufficient condition to have full coupling is that every line intersects a
completely full column. For symmetric ordered matrices, this is also a necessary
request. In this case the critical configuration is the one with minimal connectance
which presents full coupling.

On the basis of these results, we can see that the position of the minimum for
ρ(C) corresponds to the connectance Ccrit for which one has full coupling (see again
Figure 6.17). Ccrit is weakly dependent on n for the values we take, varying between
0.76 and 0.78 for n between 10 and 50.

The existence of a minimum corresponding to full coupling can be explained
by noticing that when the connectance is further increased, the effective number of
degrees of freedom of the system decreases. This can be demonstrated as follows.
Consider again the equation for the ith momentum:

Pi = pi +
n∑

j=1

εjαji sin
[ n∑

k=1

αjk(qk + pk)
]
. (6.29)

When the matrix has m upper and lower diagonals filled, i.e. Nc = m (m = 1 being
the main diagonal), in the coupling terms

(
αjk(qk + pk)

)
the αjk are equal to:
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α1,k = 1 for k = 1 . . .m , 0 otherwise
α2,k = 1 for k = 1 . . .m+ 1 , 0 otherwise
α3,k = 1 for k = 1 . . .m+ 2 , 0 otherwise
· · ·
αn−m,k = 1 for k = 1 . . . n− 1 , 0 otherwise
αn−m+1,k = 1 for k = 1 . . . n , 0 otherwise
αn−m+2,k = 1 for k = 1 . . . n , 0 otherwise
· · ·
αm−1,k = 1 for k = 1 . . . n , 0 otherwise
αm,k = 1 for k = 1 . . . n , 0 otherwise
αm+1,k = 1 for k = 2 . . . n , 0 otherwise
αm+2,k = 1 for k = 3 . . . n , 0 otherwise
· · ·
αn,k = 1 for k = n−m+ 1 . . . n , 0 otherwise.

In the combinations
∑n

k=1 αjk(qk + pk) =
∑n

k=1 αjkqk +
∑n

k=1 αjkpk one can then
define the summed variables:

zm
1 =

∑m
k=1 pk using the α1,k

zm+1
1 =

∑m+1
k=1 pk using the α2,k

zm+2
1 =

∑m+2
k=1 pk using the α3,k

· · ·
zn−1
1 =

∑n−1
k=1 pk using the αn−m,k

zn
1 =

∑n
k=1 pk using the αn−m+1,k

zn
1 =

∑n
k=1 pk using the αn−m+2,k

· · ·
zn
1 =

∑n
k=1 pk using the αm−1,k

zn
1 =

∑n
k=1 pk using the αm,k

zn
2 =

∑n
k=2 pk using the αm+1,k

zn
3 =

∑n
k=3 pk using the αm+2,k

· · ·
zn
n−m+1 =

∑n
k=n−m+1 pk using the αn,k

and the same for the summed variables ws
r using the qk. It is evident that the same

variables zn
1 and wn

1 appear 2m−n times, so globally one has ν = n−(2m−n)+1 =
2(n −m) + 1 different variables zs

r and the same number of different variables ws
r.

By examination of the equations (6.29), it turns out that once the dynamics of
the summed variables is solved, the system can be integrated for the pi and qi,
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so the effective dimension of the system is 2ν. Such number decreases when m is
increased, i.e. when increasing the connectance. For the case of full coupling, when
m = (n+ 2)/2, ν = n− 1. For C = 1, i.e. m = n, ν = 1, and one recovers again the
result presented in the equation (6.25).

In this specific model, increasing the connectance beyond Ccrit leads in fact to a
reduction of the effective number of degrees of freedom. When the number of degrees
of freedom is not reduced, i.e. for C < Ccrit, the percentage of regular orbits ρ
decreases to a minimum when the fraction of direct couplings Cd is increased. At
this point, ρ starts to increase because the number of dynamically relevant variables
is decreased, while Cd cannot further increase.

We want to see now whether this special “ordered” way of filling has some in-
fluence on the behaviour of ρ(C). Given a value for C, we then fill the matrix A
by assigning random positions for the non-zero coefficients αij , still enforcing the
constraint αij = αji. We take 100 different realizations for the matrices A and
the curve ρ(C) is averaged over the set of all the matrices. We calculate ρ(C) for
n = 10, 20, 30, 50, 100 and ε = 10−3. The results are plotted on Figure 6.18, to
compare with the ordered case displayed on Figure 6.14, for which the dimensions
n and the value of ε are the same. We note that there are no evident qualitative
changes between the two cases. In fact, at least for εn2 small, ρ(0) must be equal
to 1, and ρ(1) very close to 1 independently of the way of filling the matrix, so a
minimum must be present.

While in this non-ordered case there is no explicit formula to evaluate the fraction
of direct couplings Cd, we can still count it directly once a matrix A is given. We
then study the position of the minimum as a function of the fraction of couplings
averaged over all the matrices, still indicated as Cd. We consider the case n = 10,
for which the minimum can be clearly identified. We plot on Figure 6.19 the curve
ρ(C) along with the function Cd(C). The minimum of ρ is reached when Cd becomes
maximal (i.e. equal to 1), exactly for C = 0.82 (even if the maximum of Cd is not
clearly distinguishable on the Figure). At this point the matrix A is not yet full
on average, but increasing further the connectance adds simply multiple couplings,
while Cd remains constant. Now the dominant effect becomes probably the reduction
of degrees of freedom, which leads to a rapid increase of ρ with C until the matrix is
full. To better investigate this phenomenon, on Figure 6.20 we plot ρ as a function
of Cd. The circles correspond to the values ρ(Cd) for which Cd increases from 0 to
1, and the triangles to the values ρ(Cd) for which Cd is equal to 1. It is evident that
ρ(Cd) becomes minimal when Cd reaches 1. In conclusion, the indicator Cd is still the
meaningful one to give information on the probability of chaoticity, independently
of the filling procedure.
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Figure 6.18: Probability of regularity ρ as a function of C for n = 10, 20, 30, 50, 100
and ε = 10−3 with non-ordered connectance.

6.5 The coupled Hamiltonian mean field model

We want to check now the influence of the connectance on a different model, for which
the coefficients of a coupling matrix correspond exactly to the direct interactions
among degrees of freedom.

Let’s take the classical Hamiltonian mean field model [1] with a perturbative
parameter ε

H =
n∑

j=1

p2
j

2
+

ε

2n

n∑

j=1

n∑

k=1

(1− cos(qj − qk)). (6.30)

Here all the degrees of freedom are coupled among them. This Hamiltonian describes
a set of n particles moving on the unit circle, and has been used to model phase
transitions. Let us introduce coupling coefficients αjk which are still taken equal to
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Figure 6.19: Probability of regularity ρ and fraction of direct couplings Cd as function
of C for n = 10 and ε = 10−3 with non-ordered connectance.
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Figure 6.20: Probability of regularity ρ as a function of Cd for n = 10 and ε = 10−3

with non-ordered connectance.
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0 or 1, and perturbative parameters depending on the particles:

H =
n∑

j=1

p2
j

2
+

1
2n

n∑

j=1

n∑

k=1

εjk cos[αjk(qj − qk)]. (6.31)

When all the αjk are equal to 1 the two models are the same. The equations of
motion read





∂pj

∂t
= − 1

2n

n∑

k=1

εjkαjk sin[αjk(qj − qk)] +
1
2n

n∑

k=1

εkjαkj sin[αkj(qk − qj)] =

− 1
n

n∑

k=1

εjkαjk sin[αjk(qj − qk)]

∂qj
∂t

= pj

(6.32)
where the symmetries αij = αji and εij = εji have been imposed.

Once discretized the system with the leap-frog integrator as done for the first
model, we obtain the following mapping:




Pj = pj − 1

n

n∑

k=1

αjkεjk sin[αjk(qj + pj − qk − pk)].

Qj = qj + pj .

(6.33)

In this model it is clear that if αij = 0 the ith and the jth degree of freedom are
not directly coupled in the dynamical equations, while they are if αij = 1.

We fill the coupling matrix the ordered way, with the same parameters taken for
the Froeschlé model: n = 10, 20, 30, 50, 100 and ε = 10−3. The corresponding curves
ρ(C) are plotted on Figure 6.21. A first observation is that the probability of regu-
larity still decreases with C, but more slowly compared to the first model. Second,
no return to regularity appears when C approaches 1. We can explain the slower
decrease by noticing that now the fraction of effective couplings Cd monotonically
increases with C, and there is no intermediate situation in which the system is fully
directly coupled. This means that as far as the dimension of the system cannot be
reduced, it is really the indicator Cd which has a measurable effect on the dynamical
properties. Moreover, the chaoticity increases quite regularly with this quantity. In
this case there is no return to regularity because there is no simplification of the
model at large C. In fact, the dynamical equations simplify when the system is fully
coupled [1], but the model is still a real 2n-dimensional one, and far from being
quasi-integrable.
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Figure 6.21: Probability of regularity ρ as a function of C for n = 10, 20, 30, 50, 100
and ε = 10−3 with ordered connectance in the Hamiltonian mean field model.

It turns out that the situation remains the same when the connectance is taken
at random, still showing that for what concerns the probability of regularity the way
of filling the matrix is not really important on average.

6.6 FLI charts and FLI histograms

To visualize the transition from order to chaos and the recover of regularity when
the connectance is increased, we present here some FLI-charts in the action space
calculated for the first model when n = 20 and ε = 10−3, for 10000 iterations.
They are obtained by fixing n− 2 actions to given random values, and varying the
remaining two. In fact, we explore a plane in a n-dimensional space, and give only a
qualitative and limited representation of its full complexity. Nevertheless the results
are consistent with the fact that regularity decreases with the connectance, reaches
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a minimum and then increases again. Tori are represented in red by a value of the
FLI close to log(10000) = 4, while larger values correspond to chaotic orbits. We
take an upper threshold for the FLI equal to 1.5 log(10000) = 6, to which we set
larger values. Four charts are plotted on Figure 6.22 for C = 0.1, 0.195, 0, 284, 0.521,
the corresponding values of ρ being 0.928, 0.784, 0.546, 0.13. One sees as the tori are
progressively replaced by chaotic regions.

On Figure 6.23 we represent instead two charts corresponding to the regularity
recover, for C = 0.995 and 1 (ρ = 0.582, 0.996). On the left panel one can see
an example of transition between Chirikov and Nekhoroshev regimes, with some
crossings among the main resonances. On the right panel an almost completely
regular phase space is restored.

To give a statistical view of the transition between ordered and chaotic mo-
tions, histograms of the FLI are displayed on Figure 6.24 for the same values of the
connectance. The histograms are calculated over a set of 5000 random initial condi-
tions. One can see the transition from a situation dominated by tori (FLI distributed
around the value 4) to a mainly chaotic regime (FLI equal to the threshold). When
the regularity is recovered the FLI distribution, still centered around 4, presents a
larger tail towards smaller values, indicating the presence of resonant orbits. They
are in fact visible with blue color on the FLI-charts of Figure 6.23.

6.7 Conclusions

By comparison between two different models, we have shown that the connectance
is a meaningful concept even when nonlinearity is taken into account. Nevertheless
it has to be intended as the fraction of direct dynamical couplings among degrees
of freedom, rather than the fraction of non-zero elements in a given matrix. This
difference does not exist in the linear case, for which the two notions coincide. When
the connectance is understood in such a way, we can say that the chaoticity increases
with it until the system is fully coupled. It is not sufficient to add a few couplings to
an uncoupled n-dimensional system to switch between regularity and chaoticity in a
catastrophic way, at least when the perturbative parameters are small enough. When
the model has some special features, such that its effective dimension is reduced by
adding couplings, the number of such couplings is not anymore relevant. Instead,
the amount of chaos depends on the true dimension of the system. These special
situations are not captured by simple and economical statistical concepts like the
connectance, but must be analysed case by case. This study can be a point of
departure to apply the notion of connectance to ecology and economics in nonlinear
models as well.
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Figure 6.22: Graphical representation of the values of the FLI in the action plane
(p1, p2) for the model (6.19) with C = 0.1, 0.195, 0, 284, 0.521.
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Figure 6.23: Graphical representation of the values of the FLI in the action plane
(p1, p2) for the model (6.19) with C = 0.995, 1.0.
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Figure 6.24: Histograms of the values of the FLI for the model (6.19) with C =
0.1, 0.195, 0, 284, 0.521, 0.995, 1.0. The probability p(FLI) is plotted against the FLI
value.
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[26] Guzzo, M., Lega, E. and Froeschlé, C.: 2002, On the numerical detection
of the effective stability of chaotic motions in quasi-integrable systems, Physica
D 106, pp. 1–25

[27] Hénon, M., private communication
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