IN DICE GENERALE

Ind	lice ge	merale	Ι
Ind	lice de	elle figure	V
Ind	lice de	elle tabelle	IX
Lis	ta deg	li acronimi	XII
1	Mo	tivazioni, obiettivi e contenuto della tesi	1
	1.1	Introduzione	1
		1.1.1 La missione Smart-2	2
		1.1.2 La missione LISA	3
		1.1.3 La missione DARWIN	4
	10	1.1.4 Lamissione SI3	5
	12	La missione Microscope	6
		1.2.1 La missione scientifica	6 7
	13	Motivazioni e Objettivi	9
	14	Contenuto	10
	15	Bibliografia	ũ
2	Il n	odulo propulsore e la tecnologia FEEP	13
	21	Introduzione	13
	22	La propulsione elettrostatica	13
	23	Emissione per effetto di campo	17
	24	Il modulo FEEP	21

	25	2.4.1 Configurazione del TA Bibliografia	21 28
3	Ana	lisi dei requisiti di progetto	29
	31	Introduzione	29
	32	Sistemi di riferimento	30
	33	Requisiti fisici degli EPSA	31
		3.3.1 Ingombro massimo	31
	04	3.3.2 Massa Diversione delle guinte	32
	34 95	Direzione della spinia Desizione del mediale amostitame	32
	30 26	Posizione del modulo emetitore Doguiniti funcionali	33
	30	261 Configurations a 2 cmattitori (2TC)	34 24
		3.6.1 Configuratione a 3 emettitori (3TC)	34 34
		363 Intervallo di spinta	35
		3.6.4 Impulso totale per la missione	35
		3.6.5 Forma del getto	35
	37	Requisiti di posizionamento e d'interfaccia	36
	3.8	Requisiti meccanici	36
		3.8.1 Frequenze naturali di vibrazione	36
		3.8.2 Carichi quasi statici	36
		3.8.3 Carichi random	36
	39	Resistenza alle radiazioni	37
	3.10	Margini di contingenza e di sicurezza	37
	3.11	Altri requisiti	37
		3.11.1 Durata	37
	312	Bibliografia	38
4	Prog	getto delle configurazioni	39
	4.1	Introduzione	39
	42	Studio della configurazione	39
	43	Schema ad albero del progetto	43

Indiægnerde

4.4	Il neutralizzatore	44
45	Componenti elettroniche	44
	4.5.1 Schede della 2TC	45
	4.5.2 Schede della 3TC	45
4 6	Configurazione 2TC	46
	4.6.1 Struttura di supporto della PPCU	46
	4.6.2 Struttura di supporto dei TA	49
47	Conclusioni sulla configurazione 2TC	52
4 8	Dati riassuntivi della configurazione 2TC	53
	4.8.1 Dimensioni dell'EPSA	53
	4.8.2 Bilancio di massa del Thruster Assembly	53
	4.8.3 Bilancio di massa della PPCU	54
	4.8.4 Bilancio di massa dell'EPSA	54
	4.8.5 Inviluppo dell'EPSA	55
49	Configurazione 3TC	56
	4.9.1 Struttura di supporto della PPCU 3TC	57
	4.9.2 Struttura di supporto dei TA 3TC	60
4.10	Conclusioni sulla configurazione 3TC	66
4.11	Dati riassuntivi della configurazione 3TC	67
	4.11.1 Dimensioni dell'EPSA	67
	4.11.2 Bilancio di massa del Thruster Assembly	67
	4.11.3 Bilancio di massa della PPCU	68
	4.11.4 Bilancio di massa dell'EPSA	68
	4.11.5 Inviluppo dell'EPSA	69
412	Bibliografia	70
Ana	lisi meccaniche	71
5.1	Introduzione	71
52	Specifiche della modellazione meccanica	73
	5.2.1 Unità di misura	73
	5.2.2 Esigenze di numerazione	73
	5.2.3 Sistemi di riferimento	74
	5.2.4 Lista dei parametri Nastran utilizzabili	74
	5.2.5 Modellazione delle masse	75

5

	5 3	Criteri per l'accettazione del modello	75	
		5.3.1 Verifica statica	75	
		5.3.2 Verifica dinamica	76	
	5.4	Descrizione del modello 2TC	77	
	55	Verifiche del modello 2TC	87	
	5.6	Verifiche matematiche del modello 2TC	88	
		5.6.1 Verifica statica (1g check)	88	
		5.6.2 Verifica dinamica	89	
	5.7	Risultati dell'analisi modale 2TC	91	
	5.8	Risultati delle analisi statiche 2TC	96	
		5.8.1 Carichi quasi statici e carichi dovuti a vibrazioni cas	suali	96
	5 9	Descrizione del modello 3TC	104	
	5.10	Verifiche del modello 3TC	114	
	5.11	Verifiche matematiche del modello 3TC	115	
		5.11.1 Verifica statica (1g check)	115	
		5.11.2 Verifica dinamica	116	
	5.12	Risultati dell'analisi modale 3TC	118	
	5.13	Risultati delle analisi statiche 3TC	124	
		5.13.1 Carichi quasi statici e carichi dovuti a vibrazioni cas	suali	125
	5.14	Bibliografia	131	
-	-			
6	Con	clusioni e sviluppi futuri	B	
	61	Conclusioni	134	
	6.2	Sviluppi futuri	136	
Ann	endio	e (A) Disconi tecnici dell'EPSA 2TC		
	ondia	a (B) Discorni teornici dell'EDGA 2TC		
трр		c (b) Discritti techici dell EPSA SI C		

Indice delle figure

Capitolo 1

Figura 1.1 – La missione Smart-2	2
Figura 1.2 – LISA (Laser Interferometer Space Antenna)	3
Figura 1.3 – La missione DARWIN	5
Figura 1.4 – Il satellite Microscope	7

Capitolo 2

Figura 2.1 – Flusso di ioni	14
Figura 2.2 – Il motore a ioni del Jet Propulsion Laboratory (NASA)	16
Figura 2.3 – Menisco del metallo liquido	18
Figura 2.4 – Forma del metallo liquido	20
Figura 2.5 – Schema elettrico del sistema FEEP	21
Figura 2.6 – Esploso del Thruster Assembly	22
Figura 2.7 – TA per la configurazione 2TC	23
Figura 2.8 – TA per la configurazione 3TC	24
Figura 2.9 – Emettitore lineare e angoli di divergenza	25
Figura 2.10 – Esploso del serbatoio della configurazione 3TC	25
Figura 2.11 – Gruppo Contenitore	27

Figura 3.1 – Posizioni EPSA	29
Figura 3.2 – Spaccato del modulo propulsore	30
Figura 3.3 – Nomenclatura lati EPSA	31
Figura 3.4 – Azimut ed elevazione	32
Figura 3.5 – Rotazione	32
Figura 3.6 – Geometria del getto degli emettitori.	35

Capitolo 4

Figura 4.1 – Schema di possibili configurazioni	40
Figura 4.2 – Configurazione 2TC.	42
Figura 4.3 – Configurazione 3TC.	43
Figura 4.4 – Relazioni tra i sottosistemi dell'EPS	43
Figura 4.5 – Schema a blocchi degli EPSA	44
Figura 4.6 – Inviluppo della 2TC	46
Figura 4.7 – Vista esplosa della Struttura di supporto della PPCU	47
Figura 4.8 – Vista interna della Struttura di supporto della PPCU	48
Figura 4.9 – Fori di ventilazione	49
Figura 4.10 – Struttura di supporto dei TA	49
Figura 4.11 – Posizione dei TA	50
Figura 4.12 – Posizione del neutralizzatore	52
Figura 4.13 – Dimensioni dell'EPSA 2TC	55
Figura 4.14 – Inviluppo della Struttura di supporto della PPCU 3TC	57
Figura 4.15 – Posizione delle schede nella PPCU	58
Figura 4.16 – Fori di ventilazione e messa a terra	58
Figura 4.17 – Vista esplosa della struttura di supporto della PPCU	59
Figura 4.18 – Struttura di supporto dei TA	61
Figura 4.19 – Posizioni finali del centro della fessura	63
Figura 4.20 – Distanza tra il fascio ionico e la struttura di supporto	63
Figura 4.21 – Coordinata ZEPSA al fine di evitare interferenza	64
Figura 4.22 – Posizione del neutralizzatore	65
Figura 4.23 – Dimensioni dell'EPSA 3TC	69

Figura 5.1 – Mesh e spessori EPSA 2TC	79
Figura 5.2 – Mesh e spessori EPSA 2TC	79
Figura 5.3 – Mesh e spessori EPSA 2TC	80
Figura 5.4 – Mesh e spessori EPSA 2TC	80
Figura 5.5 – Modello FEM dell'EPSA 2TC	84
Figura 5.6 – Modello FEM dell'EPSA 2TC	84

Indiægnerde

Figura 5.7 – Modello FEM dell'EPSA 2TC: masse del TA e del	
neutralizzatore	85
Figura 5.8 – Modello FEM della struttura dei TA dell'EPSA 2TC	85
Figura 5.9 – Modello FEM della struttura della PPCU dell'EPSA 2TC	86
Figura 5.10 – Modello FEM dell'EPSA 2TC: interfaccia col satellite	86
Figura 5.11 – Modo proprio associato alla 1a frequenza di vibrazione	94
Figura 5.12 – Modo proprio associato alla 1a frequenza di vibrazione	94
Figura 5.13 – Modo proprio associato alla 3a frequenza di vibrazione	95
Figura 5.14 – Modo proprio associato alla 3a frequenza di vibrazione	
(particolare)	95
Figura 5.15 – Andamento della PSD (2TC)	97
Figura 5.16 – Tensioni di Von Mises, configurazione 2TC. Caso LC6	102
Figura 5.17 – Tensioni di Von Mises, configurazione 2TC. Caso LC6	102
Figura 5.18 – Tensioni di Von Mises, configurazione 2TC. Caso LC2	103
Figura 5.19 – Tensioni di Von Mises, configurazione 2TC. Caso LC2	103
Figura 5.20 – Posizione delle schede nella PPCU	106
Figura 5.21 – Spessori della meshdell'EPSA 3TC	107
Figura 5.22 – Spessori della meshdell'EPSA 3TC	107
Figura 5.23 – Spessori della meshdell'EPSA 3TC	107
Figura 5.24 – Spessori della meshdell'EPSA 3TC	108
Figura 5.25 – Spessori della meshdell'EPSA 3TC	108
Figura 5.26 – Spessori della meshdell'EPSA 3TC	108
Figura 5.27 – Modello FEM dell'EPSA 3TC	111
Figura 5.28 – Modello FEM dell'EPSA 3TC	111
Figura 5.29 – Modello FEM della struttura dei TA (3TC)	112
Figura 5.30 – Modello FEM della struttura dei TA (3TC)	112
Figura 5.31 – Modello FEM della struttura della PPCU (3TC)	113
Figura 5.32 – Dettaglio dei TA	113
Figura 5.33 – Modo proprio associato alla 1a frequenza di vibrazione	120
Figura 5.34 – Modo proprio associato alla 2a frequenza di vibrazione	120
Figura 5.35 – Modo proprio associato alla 2a frequenza di vibrazione	121
Figura 5.36 – Modo proprio associato alla 3a frequenza di vibrazione	121
Figura 5.37 – Modo proprio associato alla 3a frequenza di vibrazione	122
Figura 5.38 – Modo proprio associato alla 4a frequenza di vibrazione	122
Figura 5.39 – Modo proprio associato alla 5a frequenza di vibrazione	123
Figura 5.40 – Modo proprio associato alla 5a frequenza di vibrazione	123
Figura 5.41 – Andamento della PSD (3TC)	125
Figura 5.42 – Tensioni di Von Mises, configurazione 3TC. Caso LC17	129

Progetto della struttura di supporto del sistema di propulsione per il satellite Microscope

Figura 5.43 – Tensioni di Von Mises, configurazione 3TC. Caso LC17 129

Figura 5.44 – Tensioni di Von Mises, configurazione 3TC. Caso LC18 130

Figura 5.45 – Tensioni di Von Mises, configurazione 3TC. Caso LC18 130

Indice delle Tabelle

Capitolo 2

Tabella 2.1 – Caratteristiche del riscaldatore	26
--	----

Capitolo 3

Tabella 3.1 – Allineamento sistemi di riferimento	31
Tabella 3.2 – Angoli $\alpha \in \beta \in \Omega$, 2TC	33
Tabella 3.3 – Angoli $\alpha \in \beta \in \Omega$, 3TC	33
Tabella 3.4 – Posizioni centri di spinta, 2TC	34
Tabella 3.5 – Posizioni centri di spinta, 3TC	34
Tabella 3.6 – Definizione della densità spettrale di potenza	36
Tabella 3.7 – Margini di contingenza	37

Tabella 4.1 – Caratteristiche delle possibili configurazioni	41
Tabella 4.2 – Proprietà dell'alluminio A16061-T6	46
Tabella 4.3 – Coordinate del centro dell'emettitore	51
Tabella 4.4 – Ingombri e inviluppo dell'EPSA 2TC	53
Tabella 4.5 – Bilancio di massa del Thruster Assembly	53
Tabella 4.6 – Bilancio di massa della PPCU	54
Tabella 4.7 – Bilancio di massadell'EPSA 2TC	54
Tabella 4.8 – Proprietà dei materiali delle piastre	62
Tabella 4.9 – Coordinate del centro della slitta	62
Tabella 4.10 – Dimensioni dell'EPSA	67
Tabella 4.11 – Bilancio di massa del Thruster Assembly	67
Tabella 4.12 – Bilancio di massa della PPCU	68
Tabella 4.13 – Bilancio di massadell'EPSA	68

Tabella 5.1 – Unità di misura	73
Tabella 5.2 – Intervalli di numerazione	74
Tabella 5.3 – Proprietà degli elementi Nastran	74
Tabella 5.4 – Caratteristiche inerziali dei TA 2TC	78
Tabella 5.5 – Proprietà dell'alluminio Al6061-T6	81
Tabella 5.6 – Elementi del modello Nastran	82
Tabella 5.7 – Cards usate nel modello Nastran	82
Tabella 5.8 – Parti simulate con elementi MASS	83
Tabella 5.9 – Proprietà del modello CAD 2TC	87
Tabella 5.10 – Proprietà del modello FEM 2TC	88
Tabella 5.11 – Reazioni d'interfaccia	88
Tabella 5.12 – Risultati della verifica statica	89
Tabella 5.13 – Massa effettiva per le traslazioni, con vincoli nulli	89
Tabella 5.14 – Massa effettiva per le rotazioni, con vincoli nulli	90
Tabella 5.15 – Energia di deformazione residua	90
Tabella 5.16 – Masse effettive per le traslazioni	93
Tabella 5.17 – Masse effettive per le rotazioni	93
Tabella 5.18 – Fattori di sicurezza	96
Tabella 5.19– PSD delle vibrazioni casuali (2TC)	97
Tabella 5.20 – Schema delle combinazioni dei carichi	98
Tabella 5.21 – Fattori di carico delle vibrazioni casuali	99
Tabella 5.22 – Risultati dell'analisi quasi-statica.	100
Tabella 5.23 – Situazioni di carico	101
Tabella 5.24 – Caratteristiche inerziali dei TA 3TC	104
Tabella 5.25 – Proprietà dei materiali	106
Tabella 5.26 – Elementi del modello Nastran	109
Tabella 5.27 – Cards usate nel modello Nastran	110
Tabella 5.28 – Caratteristiche di tutti gli elementi MASS usati	110
Tabella 5.29 – Proprietà del modello CAD 3TC	114
Tabella 5.30 – Proprietà del modello FEM 3TC	114
Tabella 5.31 – Reazioni d'interfaccia	115
Tabella 5.32 – Risultati della verifica statica	115
Tabella 5.33 – Energia di deformazione residua	116
Tabella 5.34 – Massa effettiva per le traslazioni	117
Tabella 5.35 – Massa effettiva per le rotazioni	117

Indiægenerde

Tabella 5.36 – Masse effettive per le traslazioni	119
Tabella 5.37 – Masse effettive per le rotazioni	119
Tabella 5.38 – Proprietà dei materiali	124
Tabella 5.39 – Fattori di sicurezza	124
Tabella 5.40 – PSD delle vibrazioni casuali (3TC)	125
Tabella 5.41 – Fattori di carico delle vibrazioni casuali	126
Tabella 5.42 – Schema delle combinazioni dei carichi	127
Tabella 5.43 – Situazioni di carico	127
Tabella 5.44 – Risultati dell'analisi quasi-statica.	128

Lista degli acronimi

2TC	Two Thrusters Configuration
3TC	Three Thrusters Configuration
CAD	Computer Aided Design
DPIA	Data Processing and I/F Assembly
EPS	Electric Propulsion Subsystem
EPSA	Electric Propulsion Subsystem Assembly
FEEP	Field Emission Electric Propulsion
FEM	Finite Element Model
FOS	Factor Of Safety
HVA	High Voltage Accelerator Converter
HVE	High Voltage Emitter Converter
MoI	Moment of Inertia
MOS	Margin Of Safety
PPCU	Power Processing and Control Unit
PPIA	Power Processing and I/F Assembly
TA	Thruster Assembly
TSA	Thruster Supply Assembly