Tesi etd-04042023-015231 |
Link copiato negli appunti
Tipo di tesi
Tesi di laurea magistrale
Autore
FEDERICO, GIULIO
URN
etd-04042023-015231
Titolo
Design and development of Artificial Intelligence algorithms for the analysis of EEG signals in Autism Spectrum Disorder
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
ARTIFICIAL INTELLIGENCE AND DATA ENGINEERING
Relatori
relatore Prof. Gennaro, Claudio
relatore Prof. Amato, Giuseppe
relatore Prof. Falchi, Fabrizio
relatore Dott.ssa Billeci, Lucia
relatore Prof. Amato, Giuseppe
relatore Prof. Falchi, Fabrizio
relatore Dott.ssa Billeci, Lucia
Parole chiave
- ai
- artifacts
- autism
- brain
- children
- clustering
- cnn
- coherence
- connectivity
- crossspectraldensity
- dnn
- eeg
- electroencephalogram
- fft
- filtering
- Fourier
- genetic_algorithms
- grangercasuality
- helmet
- hilbert
- ica
- imaginarycoherency
- ispc
- kmeans
- matlab
- nsga2
- Pareto
- pca
- power
- preprocessing
- signals
- spectrum
- topographic
- trials
- wavelet
Data inizio appello
28/04/2023
Consultabilità
Completa
Riassunto
Autism Spectrum Disorders (ASD) are brain development alterations with onset in the first three years of life that lead to difficulties mainly in learning, social relationships and language, as well as often repetitive behaviors. The term "spectrum" underlines how autism never presents itself in the same form but varies according to the person and the time, making it difficult to understand the boundaries with the naked eye or with more traditional methods. The main reason of this work is to further investigate these boundaries, first analyzing which characteristics to date are typical in both anatomical and functional terms in both groups, and then proceeding in this same work not only with the power distribution analysis in the bands frequency drivers over the entire scalp but also doing a connectivity analysis on each of the regions since autism is more a connectivity issue than a power issue. Through a statistical analysis and subsequently through artificial intelligence algorithms we will try to understand which brain characteristics could better distinguish one group from another, in particular we will do clustering on the original features deriving from the application of algorithms to extract power and connectivity and subsequently transforming these features into others through neural networks to understand which representations best lend themselves to this discrimination. The greater understanding of these boundaries in the pre-childhood age will help to act in a timely manner to suggest any behavioral and/or pharmacological therapies capable of greatly reducing the effects of the disorder.
File
Nome file | Dimensione |
---|---|
frontespizio.pdf | 854.79 Kb |
TesiMagi...eAIDE.pdf | 32.65 Mb |
Contatta l’autore |