Configuration File Manager User Manual
Index

1. Main frame description...
2
2. Select an element ...
3
3. Edit command ..
4
4. Create command..
7
5. Remove command ..
12
6. Paste and Copy-paste commands...
14
7. Search command..
17
8. Source change...
18
Appendix A. Attributes value check. ...
20
Appendix B. Definition file. ..
23
Appendix C. Installation ...
27
1. Main frame description
When the application starts, the main frame is loaded. The main frame is the main part of the interface that shows the data the user is working with and the operations he can use.
The main frame appears like this:
[image: image1.jpg]
The main frame is composed by three parts:

- Data tree: this area is the one where the application shows the actual data extracted from the source XML file. Data is represented as a tree where each node is labelled with the name of the element it refers to and with some attribute values. The attributes that the data tree has to show are specified in the definition file (see Appendix B: ”Definition File”). Using this area the user can browse the data, select an element and see which are the values of its attributes.

- Attributes Value: this area shows to the user all the attributes of the element currently selected in the data tree section. It also shows the values of each attribute. This area is not editable.
- Commands: this area contains all the buttons that allow the user to perform the operations on data. When an operation can be done, the correspondent button becomes clickable. For example, remove command is available only if an element in the data tree is selected. Edit command is available only if the selected element has some attributes.

2. Select an element
In order to select an element, the user can just browse the tree in the data tree section and click on the element he wants. Selecting an element the application displays the attributes and their values belonging to that element.

For example, in the figure we can see that the element “4-stage” have been selected. In the attribute values section it is possible to see its attribute.

[image: image2.jpg]
As we can see from the picture, the Data tree section shows the element extracted from the source file as a tree. Each node has a number, the name of the element and a list of attribute values. Which are the attribute values displayed depends on the specification given in the definition source file.

3. Edit command

The edit command is the operation that allow the user to change the values of the attributes of an existing element. This operation can be requested by user only if the current selected element in the data tree section has some attributes.

Once an element has been selected, clicking on the “edit element” button it is possible to access to the data editor interface.
[image: image3.jpg]
The data editor interface shows the user a list of the attributes belonging to the previously selected element and the values assumed by these attributes.

Clicking on one of the listed attributes, its name appear in the “attribute” field and its value appears in the “value” field.

There are different types of attributes. The type of each attribute is defined in the definition file. For more information on the types see the chapter.

The data editor cope with types in two different ways.
- listed values

In this case the data editor displays a list of possible values the attribute can assume. For example the attribute “dataconf” in the figure can assume only the values provided in the list.

[image: image4.jpg]
Once the value has been selected, the data editor displays the changes:

[image: image5.jpg]
- string values

In this case the user can insert a general string as value.
[image: image6.jpg]
When the user selects the “ok button” the application stores the modification in the source file.

The user can abort the operation in any moment clicking on the cancel button.
4. Create command
The create command allows the user to add a new element. This operation can be requested by user only if the current selected element can contain new elements. This depends by the structure defined by the DTD () associated with the XML source file.
When user click on the create button, the application check the structure of the source file in order to see what are the elements that can be created as children of the selected element.

If there are more than one element that can be created, the application shows a list of all these elements. The user has to select which one is the element he wants to create.

[image: image7.jpg]
In the picture we can see the interface for the creation of elements. In the case of the picture, there are 2 different available elements that can be created by the application: “value_list” and “exception_list”.
Once the user selected one of this, the system checks the structure of the source file to see if there are some other elements that it is needed to create when the selected one wants to be created. If there are some, the application warns the user as in figure:

[image: image8.jpg]
Here we can see that the system warns the user that in order to create a “value_list element”, it is needed to create a “value” element as well.

If there is only one possible element that can be create as children of the selected element, the application choose it automatically and jump to the following step.

In next figure, there only element selectable is “parameter”. So the application selects it automatically and jump to the step in which warns the user that it is needed to create 3 elements in order to maintain a correct structure.

[image: image9.jpg]
The application now checks the elements it has to create and select the best creation order. This order depends by the possibility that values of attribute of one element, depends by the values of other attribute in a different element. In this case the first element created is the one that has no dependencies.

Moreover the application automatically generates those elements that has no attributes.

Following with the “parameter” element creation example the application ask the user to fill the attributes of the first element to create:

[image: image10.jpg]
As it is possible to see in the title of the window, this step is the creation of the “value” element. The user inserted “zxc” value for the name attribute, and “zxczxc” for the username attribute.
[image: image11.jpg]
This is the creation of the parameter element.

Note that even if the “value” element is a child of the “parameter” element, this one has been created after the “value” element. This happened because the field “default” of “parameter” has to have a value among all the possible values of the attribute “name” of the elements “value” that are children of the “parameter”. This relation is defined in the definition file.

The “value_list” parameter has been automatically created because it has no attributes.

Finally the user has to decide in which place it wants to introduce the new element, among the admitted ones. The new element will be inserted right after the selected one.

[image: image12.jpg]
This is the result of the command:
[image: image13.jpg]
5. Remove command

The remove command deletes an existing element. This command can be selected by the user when an element has been selected.

The remove command removes the selected element and all its children. When the remove button is clicked a confirmation warning appears:

[image: image14.jpg]
Removing an element can make not valid the structure of the resulting file. In fact, when it is removed an element that in the structure is defined as “required”, the resulting structure is not valid any more.

In this case, before removing the element the application asks to the user:

[image: image15.jpg]
If the user selects “yes”, the source files will be overwritten. This is permitted because sometimes, in order to do specific modification, it is needed to pass through a step in which the structure of the source file is not valid.

If the user selects “No” the application asks the user if he wants to store the not valid file in a different file.

[image: image16.jpg]
This allow the user to change the source using the new file without overwriting the real source. So if some problem happens, it is possible to go back to the original source.
6. Cut-paste and Copy-paste commands
This are the normal cut and copy commands. Cut and copy are available to the user when an element is selected. Paste command is available after the execution of a cut or a copy command.

When cut button is pressed the actual element is remembered by the system. Then the user has to select where it wants to move the element and select the “paste” button. A message will warn the user:

[image: image17.jpg]
In this case we selected to move an element from position 1 to position 4. If the user selects “yes” the first element will be moved:

[image: image18.jpg]
The copy command work in a similar way, but it duplicates the element:

[image: image19.jpg]
In this case the user wants to copy the ”1-stage” element belonging to “1-option” into the selected position.

[image: image20.jpg]
7. Search command
The search command looks for a specific data among the whole source data. When the application founds the requested element, attribute and/or value, it displays to the user. The search command is available to the user when at least one of the search field are filled.

Any of the three search field can me filled by the user:

[image: image21.jpg]
Clicking on the search button for the first time, the first occurrence of the searched element, attribute and/or value is expanded:

[image: image22.jpg]
Clicking more times on the search button the application shows the next element, attribute or value that match the required conditions.

8. Source change

This option allows the user to change the source files that the application is using. This option is selectable from the top menu:

[image: image23.jpg]
When selected the source change interface is made visible by the application.

At this point the user can select the source files one by one in the correct order, or select a special text file that packs all the information needed:

[image: image24.jpg]
When the user has introduced all the needed source files, the application verifies that the xml source file has a right structure with respect to the DTD file, and that the library can be loaded by the system.

If the xml source has not a valid structure, the sources are not changed.

If the library is not loadable, the application displays a warning message:

[image: image25.jpg]
After this the application starts to work with the new source files, but it does not perform any check on the external typed attribute.

Appendix A. Attributes value check.
Both in create and edit commands the application has to check that the values introduced by the user respects the type defined in the definition file.

There are 5 types:

1 Reference: in this case the values of an attribute can range among the values that another attribute can assume in the source file.
Let’s do an example:

In the figure it is shown the data tree for a source file. The “dataconf” elements, has an attribute that is unique (there are not 2 “dataconf” elements with the same value in that attribute).

[image: image26.jpg]
Now imagine that there is an element that has an attribute called “dataconf” (as the element name in the figure before, but this time is an attribute). This dataconf attribute has type referenced. It refers to the dataconf element, name attribute.

So when the user edit the dataconf attribute it can only select one of the names that appears in the figure. Something like:

[image: image27.jpg]
Note that the list of the possible values are the same values that appears in the previous image.

2. enumerated: the concept is similar to the previous one. But in this case the possible values are not the attribute of another element in the source file. In this case the possible values are directly provided as list when the type is defined. The list is provided in the definition file.
A general example can be an attribute that can range only between “true” and “false”. The application in this case shows a list similar to the previous case, but with only “true” and “false” options.

3. external enumerated: it is similar to the referenced one. But the values are not collected in the source file. The values belongs to an external file. The application needs to know which is the file where to look for the values. In order to access this external file, the application utilize the library that is provided as source file. See the change source command section for more informations.

The application collects the values and makes a list. Then it shows them as in the referenced case.

4.external: in this case the application does not provide a list. The user can introduce any string as value and then the application will check it looking in an external file, using the same library as in the external enumerated case.

In case in which the external check fails, it shows a warning message like this:

[image: image28.jpg]

5.string: in this case there are no restrictions on the attribute value.
Appendix B. Definition file
The definition file is an xml support file that describes some characteristic of the element attributes in the source xml file.
There are 4 possible types of element in the definition file:

The <attr> element.

It describes the type of the attribute and how the configuration file manager has to use it. Each attr element contains the following attributes:

-name: the name of the attribute in the source xml file to which it refers

-type: the type of the attribute;

-extern: if the validity of the value is done by an external function or not

-source: it can contains the list of the enumerated values the attribute can assume or a reference to another attribute

-subtype: it can be data if it refers to a file or termname if it refers to a term group.

-group: the term group to which it refers

-datatype: the file to which it refers

-default: if it has a default name.

Depending on the type it has to have a subset of the other attributes, whit a particular meaning:
-Enumeration. This attribute only can assume a restricted set of values, defined in the source field.
Required fields:

Name: the name of the attribute

Type: enum

Source: the list of the possible values. The list has to be written in the form “value1:value2:valueN”

Optional fields:
Default: a default value between the possible ones.

Examples:

<attr name="morph" type="enum" source="yes:no:unknown" />
The attribute “morph” in general can only assume values “yes”, “no” or “unknown”
<attr name="enable" type="enum" source="true:false" default="true" />
The attribute “enable” can assume values “true” or “false”. Its default value is “true”.

-External enumeration. This attribute only can assume a restricted set of value, defined in a file or in a term group.
Required fields:

Name: the attribute name

Type: “enum”

Extern: ”yes”

Subtype: the subtype of the values (data or termname)

Group: (if subtype is “termname”) the term group

Datatype: (if subtype is “data”) the file type
OptionalFields:

Examples:
<attr name="surname" type="enum" extern="yes" subtype="termname" group="reglabels"/>

The attribute “surname” can only assume a value among the values defined in the reglabls term group.

<attr name="order" type="enum" extern="yes" subtype="data" datatype="bincd"/>
The attribute “order” can assume a value among the values defined in a binary combinatory dictionary file.
-String. This attribute has a general String value.
Required fields:

Name: the attribute name

Type: ”string”
OptionalFields:

Examples:

<attr name="username" type="string" />

The attribute “username” can assume any string as value.
-Reference. This attribute can assume only a value among the values assumed by a certain attribute belonging to a certain element in the source xml file
Required fields:

Name: the attribute name

Type: “reference”

Source: the element and attribute to which it refers, written in the form “element:attribute”

OptionalFields:

Examples:
<attr name="input" type="reference" source="language:shortname"/>
The attribute “input” can assume only values defined in the “shortname” attribute of one of the existing “language” element in the source xml file.
-External checked String. This attribute can assume a general String value. The validity of the value is checked by a function that is out of the Configuration File Manager.

Required fields:

Name: the attribute name

Type: “string”

Extern:”yes”

Subtype: the subtype of the values (data or termname)

Group: (if subtype is “termname”) the term group

Datatype: (if subtype is “data”) the file type

OptionalFields:

Examples:
<attr name="shortname" type="string" extern="yes" subtype="termname" group="language" />
The attribute “shortname” can assume value among the ones defined in the “language” term group.
<attr name="abbrev" type="string" extern="yes" subtype="data" datatype="config" />
The attribute “abbrev” can only assume values among the ones defined in a configuration file.

The “focus” element

The focus element defines a restriction on an attribute belonging to a specific element type in the source xml file.
-Local restriction. The attribute (defined in the name field) that belongs to a specific element (defined in the element field) assumes values only among a referenced attribute and element type. Moreover the set of values is not composed by all the attribute and element type defined in the reference. The set of values is restricted to all the reference values contained into the subtree that contains the actual element and which root is the first element that belongs to the element type defined in the field wrappedin.

Required fields:

Name: the attribute name

Element: the element name

Source: the element and attribute to which it refers, written in the form “element:attribute”

Wrappedin: the root of the subtree where the application look for possible values.

OptionalFields:

Examples:

<focus name="default" element="exception" source="value:name" wrappedin="parameter_list"/>

The attribute “default” in the element “exception” can assume values defined in the “name” attribute of the “value” elements belonging to the subtree that contains the current “exception” element and has “parameter” element as root.
The “show” element

The show element is used to specify which attributes have to be shown in the browse tree of the Configuration Manager.

- Shown attributes. It defines which are the attributes that have to be shown.

Required fields:

Element: the element name to which this show element refers.

Attribute: the attribute (or attributes) that have to be shown

OptionalFields:

Examples:
<show element="stage" attribute="dataconf:order:label"/>

The element “stage” will appear in the browse tree of the Configuration Manager as:

“n-stage:dataconfValue(orderValue,labelValue)”
where n is a progressive number, dataconfValue, orderValue and labelValue are the effective values of the relative attributes belonging to this stage element.
<show element="language" attribute="name"/>
The element “language” will appear as:

“n-language:nameValue”

where n is a progressive number, nameValue is the effective value of the relative attribute belonging to this language element.
The “unique” element

The “unique” element defines if an attribute belonging to a element have to be unique among its “brother” (the other elements belonging to the same level and having the same father).
-Unique restriction. The specified attribute has to be unique among all the elements having the same father an the same depth level.

Required fields:

Name: the attribute name

OptionalFields:

Examples:
<unique element="option" attribute="name"/>
there can not be 2 element “option” that have the same value of the “name” attribute
Appendix C. Installation

1. Install Java Virtual Machine

As first step in order to install the Configuration File Manager, it is needed to have a Java virtual Machine installed on your PC. You have to download and install the JRE 6.

It is possible to download the JRE 6 from the site

http://java.sun.com/javase/downloads/index.jsp
2. The executable file
Once you have installed the JRE 6, unpack the CFM.zip file in a directory.

You should be able to use the Configuration File Manager double clicking on the Configuration_File_Manager.jar file.

You can run the application form command line using the command

Java –jar configuration_File_Manager.jar

Inside the folder that contains the configuration_File_Manager.jar file.

3. Note on the library
The program utilizes a external library during its work. If a message as the warning box at page 18 of the user manual compares when you load new source files, it could means that the application cannot load the library.

A possible problem could be that the library is located in a directory that it is not among the directory that the program scans when it tries to load the library.

In order to solve this problem, consider that the application looks for the library first in the same directory where it is installed, then in the directories System32 of windows and finally in the java libraries directory.

The application works as well without loading the external library. The only problem would be that the modification to the external type attributes are not checked by the application.
PAGE
27

