logo SBA

ETD

Archivio digitale delle tesi discusse presso l’Università di Pisa

Tesi etd-02022021-234333


Tipo di tesi
Tesi di laurea magistrale
Autore
DRAGONI, FEDERICO
URN
etd-02022021-234333
Titolo
Stochastic Optimal Control and Machine Learning Techniques for Portfolio Optimization problems
Dipartimento
INGEGNERIA DELL'INFORMAZIONE
Corso di studi
INGEGNERIA ROBOTICA E DELL'AUTOMAZIONE
Relatori
relatore Landi, Alberto
relatore Di Persio, Luca
relatore Trevisan, Dario
Parole chiave
  • applications to portfolio optimization problems
  • machine learning
  • stochastic optimal control
Data inizio appello
25/02/2021
Consultabilità
Non consultabile
Data di rilascio
25/02/2091
Riassunto
In the first part of the thesis, it is given an introduction to the most important concepts and results employed in stochastic optimal control problems. We provided the derivation of the Dynamic Programming principle, Bellman principle and HJB equation. After that, we presented an approach that employs stochastic optimal control methods to portfolio optimization problems.
In the second part of the thesis, we focused on machine learning and reinforcement learning techniques, presenting two different machine learning models to approach the portfolio optimization task
File